Anritsu envision : ensure

W-CDMA/GSM Measurement

Radio Communication Analyzer MT8820B/MT8820C/MT8821C

Revision History

Ver. No	Date	Contents	Related product software version
1.00	May 2015	MT8820B/20C/21C W/G Application Note (Ver 1.00) succeeded MT8820B/20C W/G Application Note (Ver 6.00) Overall: Changed model name from MT8820B/C to "equipment" Overall: Added MT8821C option model names to MT8820B/C option model names Added MT8821C software specification Changed 1.10 CALIBRATION and 2.13 CALIBRATION to refer to the application note for UE Calibration.	MX882000C Ver23.20 MX882001C Ver23.03 MX882100C Ver30.00 MX882101C Ver30.00
1.01	Jan 2016	Corrected error in red box in figure	MX882000C Ver23.30 MX882001C Ver23.04 MX882100C Ver30.13 MX882101C Ver30.13
2.00	Jun 2016	 Added the judgment procedure using 3GPP TS51.010-1 measurement procedure to 2.3.7 Output RF spectrum Added the judgment procedure using 3GPP TS51.010-1 measurement procedure to 2.5.5 Output RF spectrum in GPRS multislot configuration. Added the judgment procedure using 3GPP TS51.010-1 measurement procedure to 2.8.5Output RF spectrum 	MX882000C Ver23.30 MX882001C Ver23.04 MX882100C Ver30.32 MX882101C Ver30.32

Contents

1. W-CDMA Measurement Software	7
1.1. Specifications	7
1.1.1. MT8820B/20C software specification	7
1.1.2. MT8821C Specification	13
1.2. 3GPP MEASUREMENT SPECIFICATION TABLE	19
1.2.1. MX882000C/MX882100C - MT8820B/20C/21C W-CDMA Measurement Software	19
1.2.2. W-CDMA Bands	22
1.3. TRX MEASUREMENT (FUNDAMENTAL MEASUREMENT)	23
1.3.1. Connection with Test Loop Mode	
1.3.2. Disconnection with Test Loop Mode	23
1.3.3. Channel Switching using Handover	23
1.3.4. Selecting Test Items	23
1.3.5. 5.2 Maximum Output Power	24
1.3.6. 5.3 Frequency Error	24
1.3.7. 5.7 Power setting in uplink compressed mode	
1.3.8. 5.8 Occupied Bandwidth	
1.3.9. 5.9 Spectrum Emission Mask	/ Z
1 3 11 5 13 1 Error Vector Magnitude (EVM)	20 20
1 3 12 6 2 Reference Sensitivity Level	29
1.3.13. Measurement Time Reduction using Batch Process	
1.3.14. 5.4.3 Minimum Output Power	
	31
1.4.1. 5.4.1 Open Loop Power Control in Uplink (RX-middle)	
1.4.2. 5.4.1 Open Loop Power Control in Uplink (RX Upper dynamic end)	32
1.4.3. 5.4.1 Open Loop Power Control in Uplink (RX-Sensitivity level)	33
1.4.4. 5.5 Transmit ON/OFF Power	34
1.4.5. 5.13.4 PRACH Preamble Quality	36
1.4.6. Continuous Measurement of Open Loop Power Control	36
1.5. INNER LOOP POWER CONTROL MEASUREMENT	37
1.5.1. 5.4.2 Inner Loop Power Control in the Uplink	37
1.5.2. 5.13.3 UE Phase Discontinuity	38
1.6. OTHER MEASUREMENTS	43
1.6.1. 5.4.4 Out-of-synchronization of output power. 5.4.4AOut-of-synchronization handling	ng of
output power for a UE which supports type1 for DCH	43
1.6.2. 5.4.4 Out-of-synchronisation of output power (Auto) 5.4.4AOut-of-synchronization	
handling of output power for a UE which supports type1 for DCH	46
1.6.3. 5.6 Change of TFC	48
1.6.4. 6.3 Maximum Input Level	49
1.6.5. 6.8 Spurious Emissions	49
1.6.6. 7.2 Demodulation in Static Propagation Condition	50
1.7. REDUCTION OF W-CDMA/GSM MEASUREMENT TIME BY INTER-RAT HANDOVER	51
1.8. UE REPORT	52
1.9. FUNCTIONAL TEST	53
1.9.1. Voice Call	53

1.9.2. External Packet Data 1.9.3. Videophone	54 58
1.10. Calibration Measurement Function	60
1 11 HSDPA MEASUREMENT	61
1.11.1. Location Registration of Fixed Reference Channel	61
1.11.2. Connection of Fixed Reference Channel	61
1.11.3. Disconnection of Fixed Reference Channel	61
1.11.4. Channel Change by Handover	61
1.11.5. Change of Τβc, βd by Transport Channel Reconfiguration	62
1.11.6. Selection of Measurement Items	62
1.11.7. 5.2A Maximum Output Power with HS-DPCCH (Release 5 only) 5.2AA Maximum	
Output Power with HS-DPCCH (Release 6 and later)	63
1.11.8. 5.2C UE Relative Code Domain Power Accuracy (Release 6 and later)	65
1.11.9. 5.7A HS-DPCCH Power Control	71
1.11.10. 5.9A Spectrum Emission Mask with HS-DPCCH	76
1.11.11. 5.10A Adjacent Channel Leakage Power Ratio (ACLR) with HS-DPCCH	77
1.11.12. 5.13.1A Error Vector Magnitude (EVM) with HS-DPCCH 5.13.1AA Error Vector Magnitude	е
(EVM) and Phase Discontinuity with HS-DPCCH	79
1.11.13. 5.13.2A Relative Code Domain Error with HS-DPCCH	82
1.11.14. 6.3A Maximum Input Level for HS-PDSCH Reception (16QAM)	86
1.12. HSUPA MEASUREMENT	87
1.12.1. E-DCH RF Test Location Registration	87
1.12.2. E-DCH RF Test Connection	87
1.12.3. E-DCH RF Test Disconnection	87
1.12.4. Channel Change at Handover	87
1.12.5. Change of βc and βd by Transport Channel Reconfiguration	88
1.12.6. Measurement Item Selection	88
1.12.7. 5.2B Maximum Output Power with HS-DPCCH and E-DCH	89
1.12.8. 5.2D UE Relative Code Domain Power Accuracy for HS-DPCCH and E-DCH	94
1.12.9. 5.9B Spectrum Emission Mask with E-DCH	00
1.12.10. 5.10B Adjacent Channel Leakage Power Ratio (ACLR) with E-DCH	00
1.12.11. 5.13.2B Relative Code Domain Error with HS-DPCCH and E-DCH	01
1.13. HSPA EVOLUTION MEASUREMENT	07
1.13.1. E-DCH RF Test (TTI 2ms/16QAM) Location Registration	07
1.13.2. E-DCH RF Test (TTL2 ms/16QAM) Connection	07
1.13.3. E-DCH RF Test (111 2ms/16QAW) Disconnection	07
1.13.4. Channel Change by Handover	07
1.13.5. 5.2E DE Relative Coue Domain Power Accuracy for HS-DPCCH and E-DCH with 16 OAM	10
1.12.7.5.13. TAAA EVM and IQ Origin onset for HS DPCCH and E DCH with 160AM	10
1 13.8 6 3B Maximum Input Level for HS-DDSCH Recention (640AM)	11
1.14. DC-HSDPA MEASUREMENT	15
1.14.1. Synchronization of Frame Timing between 2 cells	15
1.14.2. Connection with DC HSDPA	15
1.14.5. Connection with DC_{-HSDPA}	15 15
1.14.5. Channel Switching Using Handover	16
1 14 7 6 2A Reference Sensitivity Level for DC-HSDPA	17
1.14.8. 6.3C Maximum Input Level for DC-HSDPA Reception (160AM)	18

1.14.9. 6.3D Maximum Input Level for DC-HSDPA Reception (64QAM)	119
1.15. 4C-HSDPA MEASUREMENT	120
1.15.1. Connection and Disconnection with Single band 4C-HSDPA	120
1.15.1.1. Location Registration for Single band 4C-HSDPA	120
1.15.1.2. Connection with Single band 4C-HSDPA	120
1.15.1.3. Disconnection with Single Band 4C-HSDPA	120
1.15.1.4. Channel Switching using Handover(Single band 4C-HSDPA)	120
1.15.2. Connection and Disconnection with Dual band 4C-HSDPA	121
1.15.2.1. Synchronization of Frame Timing between 2 cells	121
1.15.2.2. Location Registration for Dual Band 4C-HSDPA	121
1.15.2.3. Connection with Dual Band 4C-HSDPA	122
1.15.2.4. Disconnection with Dual Band 4C-HSDPA	122
1.15.2.5. Channel Switching using Handover(Dual band 4C-HSDPA)	123
1.15.3. 6.2C Reference Sensitivity Level for Single band 4C-HSDPA	124
1.15.4. 6.2D Reference Sensitivity Level for Dual band 4C-HSDPA	125
1.15.5. 6.3G Maximum Input Level for 4C-HSDPA Reception (16QAM)	126
1.15.6. 6.3GA Maximum Input Level for 4C-HSDPA Reception (16QAM) (3carrier)	127
1.15.7. 6.3H Maximum Input Level for 4C-HSDPA Reception (64QAM)	128
1.15.8. 6.3HA Maximum Input Level for 4C-HSDPA Reception (64QAM) (3carrier)	129
1.16 DC-HSUPA MEASUREMENT	130
1 16 1 Synchronization of Frame Timing between 2 cells	130
1 16.2 Location Registration for DC-HSUPA	130
1 16 3 Connection with DC-HSUPA(OPSK)	130
1 16 4 Connection with DC-HSUPA(160AM)	131
1.16.5. Disconnection with DC-HSUPA	
1.16.6. Channel Switching Using Handover	
1.16.7. Measurement Item Selection	
1.16.8. 5.2BA UE Maximum Output Power for DC-HSUPA(OPSK)	
1.16.9. 5.2BB UE Maximum Output Power for DC-HSUPA(160AM)	
1.16.10. 5.2DA UE Relative Code Domain Power Accuracy for DC-HSUPA with OPSK	. 134
1.16.11. 5.2EA UE Relative Code Domain Power Accuracy for DC-HSUPA with 160AM	135
1.16.12. 5.3A Frequency Error for DC-HSUPA	136
1.16.13. 5.4.1A Open Loop Power Control in the Uplink for DC-HSUPA	137
1.16.14. 5.4.1A Open Loop Power Control in the Uplink for DC-HSUPA (RX-middle)	137
1.16.15. 5.4.1A Open Loop Power Control in the Uplink for DC-HSUPA (RX Upper dynamic end	1)137
1.16.16. 5.4.1A Open Loop Power Control in the Uplink for DC-HSUPA (RX-Sensitivity level)	138
1.16.17. 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA	140
1.16.17.1. Inner Loop Power Control Parameter	141
1.16.17.2. Measurement of Inner Loop Power Control in Uplink for DC-HSUPA	142
1.16.17.3. How to Combine Segmentations at Step E. F. G. H of Inner Loop Power Control	149
1.16.18. 5.4.3A Minimum Output Power for DC-HSUPA	151
1.16.19. 5.8A Occupied Bandwidth (OBW) for DC-HSUPA	152
1.16.20. 5.9C Additional Spectrum Emission Mask for DC-HSUPA(OPSK)	153
1.16.21. 5.9D Additional Spectrum Emission Mask for DC-HSUPA(16OAM)	154
1.16.22, 5.10C Adjacent Channel Leakage Power Ratio (ACLR) with E-DCH for DC-HSUPA(OPS)	K)155
1.16.23. 5.10D Adjacent Channel Leakage Power Ratio (ACLR) with F-DCH for	.,
DC-HSUPA(16OAM)	155
1.16.24. 5.13.2BA Relative Code Domain Error with HS-DPCCH and F-DCH for DC-HSUPA	
1.16.25. 5.13.2CA Relative Code Domain Error with HS-DPCCH and F-DCH with 160AM for	
DC-HSUPA	157

1.16.26. 5.13.5 In-band emission for DC-HSUPA	
1.17. Others	
1.17.1. Calibration	
1.17.2. Dynamic Range	
1.17.3. External Loss	
1.17.4. Synchronization of Control PC and the equipment	164
1.17.5. Speeding-up Control Software	164
2. GSM Measurement Software	165
2.1. Specification	
2.1.1. MT8820B/20C software specification	
2.1.2. MT8821C software specification	
2.2. 3GPP MEASUREMENT SPECIFICATION TABLE	175
2.3. TRX MEASUREMENT (GSM)	
2.3.1. Connection with GSM	
2.3.2. Disconnection from GSM	
2.3.3. Changing TCH Channel and MS Power Level at Handover	
2.3.4. Band Indicator	
2.3.5. 13.1 Frequency error and phase error	
2.3.6. 13.3 Transmitter output power and burst timing	
2.3.7. 13.4 Output RF spectrum	
2.3.8. 14.2.1 Reference sensitivity – TCH/FS	
2.3.9. Measurement Time Reduction using Batch Process	
2.4. CONNECTION WITH GPRS	186
2.4.1. Attach procedures	
2.4.2. Connection Type	
2.4.3. Multi-slot setting	
2.4.4. Change of TCH Channel, MS Power Level and CS (Coding Scheme) at Handover	189
2.4.5. Connection with Test Mode A	
2.4.6. Disconnection from Test Mode A	
2.4.7. 13.16.1 Frequency error and phase error in GPRS multi-slot configuration	
2.4.8. 13.16.2 Transmitter Output Power in GPRS Multi-slot Configuration	
2.4.9. 13.16.3 Output RF Spectrum in GPRS Multi-slot Configuration	193
2.5. RX MEASUREMENT (GPRS)	195
2.5.1. Connection with BLER	
2.5.2. Disconnection from BLER	
2.5.3. 14.16.1 Minimum Input level for Reference Performance	
2.6. CONNECTION WITH EGPRS	196
2.6.1. Attach Procedure	
2.6.2. Connection Type	
2.6.3. Multi-slot Setting	
2.6.4. Change of TCH Channel, MS Power Level, CS (Coding Scheme) by Handover	
2.1. IX MEASUREMENT (EGPKS)	
2.7.2. Disconnection from Test Mode A	198 100
2.7.2. Disconnection from rest Node Association Accuracy in FGPRS Configuration	100
2.7.4. 13.17.3 EGPRS Transmitter Output Power	

2.7.5. 13.17.3 Output RF Spectrum in EGPRS Configuration	
2.8. RX MEASUREMENT (EGPRS) 2.8.1. Connection with BLER 2.8.2. Disconnection from BLER 2.8.3. 14.18.1 Minimum Input level for Reference Performance	
2.9. MS REPORT	
2.10. FUNCTIONAL TEST 2.10.1. Voice Call 2.10.2. External Packet Data (Option MX882001C-002)	
2.11. CALIBRATION MEASUREMENT FUNCTION	
2.12. OTHERS	
3. Audio Measurement	219
3.1 Specifications	
3.2. How to Use Voice Codec in W-CDMA	
3.2. How to Use Voice Codec in W-CDMA 3.3. How to Use Voice Codec in GSM	
 3.2. How to Use Voice Codec in W-CDMA. 3.3. How to Use Voice Codec in GSM. 3.4. Communications Test 	
 3.2. How to Use Voice Codec in W-CDMA. 3.3. How to Use Voice Codec in GSM. 3.4. Communications Test	
 3.2. How to Use Voice Codec in W-CDMA. 3.3. How to Use Voice Codec in GSM. 3.4. Communications Test	
 3.2. How to Use Voice Codec in W-CDMA. 3.3. How to Use Voice Codec in GSM. 3.4. Communications Test	
 3.2. How to Use Voice Codec in W-CDMA. 3.3. How to Use Voice Codec in GSM. 3.4. Communications Test	220 220 220 221 222 223 224 224 224 224
 3.2. How to Use Voice Codec in W-CDMA	220 220 220 221 222 223 223 224 224 224 224 224 224 226 226 227
 3.2. HOW TO USE VOICE CODEC IN W-CDMA	220 220 220 221 221 222 223 224 224 224 224 226 226 227 228
 3.2. How to Use Voice Codec in W-CDMA. 3.3. How to Use Voice Codec in GSM. 3.4. Communications Test	
 3.2. How to Use Voice Codec in W-CDMA. 3.3. How to Use Voice Codec in GSM. 3.4. Communications Test	220 220 220 221 222 223 223 224 224 224 224 224 224 224

1. W-CDMA Measurement Software

1.1. Specifications

1.1.1. MT8820B/20C software specification

Item	Specifications	
Electrical characteristics	Typical values (typ.) are only for reference and are not guaranteed.	
Frequency/Modulation measurement	Frequency Input level Carrier frequency accuracy	300 to 2700 MHz –30 to +35 dBm (Main) ±(Set frequency ×Reference oscillator accuracy +10 Hz)
	Modulation accuracy Residual vector error	≤2.5% (When one DPCCH signal and one DPDCH signal are input)
Amplitude measurement	Frequency Input level Measurement accuracy	300 to 2700 MHz -65 to +35 dBm (Main) MT8820B/MT8815B ± 0.5 dB (-25 to +35 dBm), ± 0.7 dB (-55 to -25 dBm), after calibration MT8820C ± 0.5 dB (-20 to +35 dBm), typ. ± 0.3 dB (-20 to +35 dBm), ± 0.7 dB (-50 to -20 dBm), ± 0.7 dB (-60 to -50 dBm), after calibration, 10 to 40°C
	Linearity Measurement object	±0.2 dB (–40 to 0 dB, ≥–50 dBm), ±0.4 dB (–40 to 0 dB, ≥–65 dBm), DPCH, PRACH

Table 1.1.1-1 Specifications for MX882000C W-CDMA Measurement Software

Item	Specifications	
Occupied bandwidth	Frequency	300 to 2700 MHz
	Input level	–10 to +35 dBm (Main)
Adjacent channel	Frequency	300 to 2700 MHz
leakage power	Input level	–10 to +35 dBm (Main)
	Measurement point	±5 MHz, ±10 MHz
	Measurement range	≥50 dB (±5 MHz), ≥55 dB (±10 MHz)
RF signal generator	Output frequency	300 to 2700 MHz (1 Hz steps)
	Channel level (CPICH, P-CC	PCH, SCH, PICH, DPCH, S-CCPCH, AICH) Off, –30.0 to 0.0 dB (0.1 dB steps, Relative level with Ior (Total power))
	Channel level (OCNS)	Off, automatic setting
	Channel level accuracy	±0.2 dB (Relative level accuracy with Ior (Total power))
	AWGN level	Off, –20 to +5 dB (0.1 dB steps, Relative level with Ior (Total power))
	AWGN level accuracy	±0.2 dB (Relative level accuracy with Ior (Total power))
Error rate	Function	Applying PN9 or PN15 pattern to DTCH
measurement	Measurement item	BER, BLER
	BER measurement object	
		Loop Back data applied to uplink DTCH and serial data input from the call processing I/O port on the rear panel
	BLER measurement objec	t
		Loop Back data applied to uplink DTCH
Call processing	Call control	Location registration, call origination, call termination, handover, network-side release, UE-side release (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)
	UE control	Output level, Loopback (UE control conforming to the 3GPP standard can be performed.)

Table 1.1.1-1 Specifications for MX882000C W-CDMA Measurement Software (Cont'd)

Item	Specifications			
Function	End-to-end communications test between a handset connected to the MT8820C and UE. Encode the voice from Audio Input, Output the decoded voice to AF Output. Encode the tone signal and Output the tone signal to AF Output. Measure the voice signal from AF Input and decoded voice signal.			
Voice codec	AMR 12.2 kbps			
Codec level adjustment	Encoder input gain	–3.00 to 3.00 dB, 0.01 dB steps		
	Handset microphone volu	me 0, 1, 2, 3, 4, 5		
	Handset speaker volume	0, 1, 2, 3, 4, 5		
AF output	Frequency range	30 Hz to 10 kHz, Resolution 1 Hz		
	Accuracy	\pm (Setting Frequency \times Reference oscillator accuracy +0.1 Hz)		
	Level setting range	0 to 5 Vpeak (AF Output connector)		
	Setting resolution	1 mV (≤5 Vpeak), 100 μV (≤500 mVpeak), 10 μV (≤50 mVpeak)		
	Accuracy	±0.2 dB (≥10 mVpeak, ≥50 Hz), ±0.3 dB (≥10 mVpeak, <50 Hz)		
	Waveform distortion	Band at ≤30 kHz ≤–60 dB (≥500 mVpeak, ≤5 kHz), ≤–54 dB (≥70 mVpeak)		
	Output impedance	≤1 Ω		
	Max. output current	100 mA		
AF input	Frequency range	50 Hz to 10 kHz		
	Input voltage range	1 mVpeak to 5 Vpeak (AF Input connector)		
	Max. allowable input voltage			
		30 Vrms		
	Frequency measurement a	accuracy + (Reference oscillator accuracy + 0.5 Hz)		
	± (Reference oscillator accuracy + 0.5 Hz)			
		±0.2 dB (≥10 mV peak, ≥50 Hz) ±0.4 dB (≥1 mV peak, ≥1 kHz)		
	SINAD measurement	Frequency at 1 kHz ≥60 dB (≥1000 mV peak) ≥54 dB (>50 mV peak) ≥46 dB (≥10 mV peak)		
	Distortion rate measurement			
		Frequency at 1 kHz ≤-60 dB (≥1000 mV peak) ≤-54 dB (>50 mV peak) ≤-46 dB (≥10 mV peak)		
	Input impedance	100 kΩ		

Table 1.1.1-2 Specifications for MX882000C-001 W-CDMA Voice Codec

Item	Specifications		
Function	RF TRX tests (Tx measurement and Rx measurement) related to HSDPA		
Amplitude measurement	This item depends on the MX882000C's performance. Measurement object DPCH, HS-DPCCH		
Throughput measurement	Function	Throughput measurement using Fixed Reference Channel (H-Set)	
	Measurement object	ACK and NACK applied to HS-DPCCH	
CQI measurement	Measurement object	Periodically reported CQI value applied to HS-DPCCH	
Call processing	Call control	Location registration, Fixed reference channel (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)	
	UE control	Output level (UE control conforming to the 3GPP standard can be performed.)	

Table 1.1.1-3 Specifications for MX882000C-011 HSDPA Measurement Software

Table 1.1.1-4 Specifications	or MX882000C-012 HSDPA H-Set 6 Throughput Test
------------------------------	--

Item	Specifications	
Function	Throughput tests related to HSDPA H-Set 6	
Throughput measurement	Function	Throughput measurement using Fixed Reference Channel (H-Set 6)
	Measurement object	ACK and NACK applied to HS-DPCCH
CQI measurement	Measurement object	Periodically reported CQI value applied to HS-DPCCH
Call processing	Call control	Location registration, Fixed reference channel (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)
	UE control	Output level (UE control conforming to the 3GPP standard can be performed.)

Table 1.1.1-5 Specifications for MX882000C-013 HSDPA High Data Rate

Item	Specifications	
Function	Throughput tests on HSDPA (H-Set 6) or at the peak rate of Category 6, 8, 9 or 10 UE	
Throughput measurement	Function	Throughput measurement using "Fixed Reference Channel (H-Set 6)" or "HS-SCCH or HS-PDSCH equivalent to the peak rate of Category 6, 8, 9 or 10 UE"
	Measurement object	ACK and NACK applied to HS-DPCCH
CQI measurement	Measurement object	Periodically reported CQI value applied to HS-DPCCH

Item		Specifications	
Function	RF TRX tests (Tx measure	RF TRX tests (Tx measurement and Rx measurement) related to HSUPA	
Amplitude measurement	This item depends on the Measurement object	ne MX882000C's performance. DPCH, HS-DPCCH, E-DPCCH, E-DPDCH	
Call processing	Call control	Location registration, E-DCH RF Test (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)	
	UE control	Output level (UE control conforming to the 3GPP standard can be performed.)	
	Monitoring	E-DCH throughput (Throughput measurement of E-DCH by monitoring E-TFCI included in the uplink E-DPCCH)	

Table 1.1.1-6 Specifications for MX882000C-021 HSUPA Measurement Software

Table 1.1.1-7 Specifications for MX882000C-031 HSPA Evolution Measurement Software

Item	Specifications	
Amplitude measurement	This item depends on the Measurement object	ne MX882000C's performance. DPCH, HS-DPCCH, E-DPCCH, E-DPDCH
Throughput measurement	Function Measurement object	Throughput measurement using "Fixed Reference Channel (H-Set 8)" or "HS-SCCH or HS-PDSCH equivalent to the peak rate of Category 13 or 14 UE" ACK and NACK applied to HS-DPCCH
CQI measurement	Measurement object	Periodically reported CQI value applied to HS-DPCCH
Call processing	Call control	Location registration, Fixed Reference Channel, E-DCH RF Test (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)
	UE control	Output level (UE control conforming to the 3GPP standard can be performed.)
	Monitoring	E-DCH throughput (Throughput measurement of E-DCH by monitoring E-TFCI included in the uplink E-DPCCH)

Item		Specifications	
Function	RF RX tests (Rx measure	ement) related to DC-HSDPA	
Throughput measurement	Function Throughput measurement using "Fixed Re Channel" or "HS-SCCH or HS-PDSCH equiv the peak rate of Category 22 or 24 UE"		
	Measurement object	ACK and NACK applied to HS-DPCCH	
CQI measurement	Measurement object	Periodically reported CQI value applied to HS-DPCCH	
Call processing	Call control	Location registration, Fixed reference channel (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)	
	UE control	Output level (UE control conforming to the 3GPP standard can be performed.)	

Table 1.1.1-8 Specifications for MX882000C-032 DC-HSDPA Measurement Software

Table 1.1.1-9 Specifications for MX882000C-033 DC-HSUPA Measurement Software

Item		Specifications	
Function	RF TX tests (Tx measure	RF TX tests (Tx measurement) related to DC-HSUPA	
Amplitude measurement	This item depends on the Measurement object	This item depends on the MX882000C's performance.Measurement objectDPCH, HS-DPCCH, E-DPDCH	
Call processing	Call control	Location registration, E-DCH RF Test (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)	
	UE control	Output level (UE control conforming to the 3GPP standard can be performed.)	

*MX882000C-032 DC-HSDPA Measurement Software supports MT8820C. MT8820B/15B does not support the MX882000C-032.

1.1.2. MT8821C Specification

Table 1.1.2-1Specifications for MX	882100C W-CDMA Measurer	nent Software
------------------------------------	-------------------------	---------------

Item	Specifications	
Electrical characteristics	Typical values (typ.) are or	nly for reference and are not guaranteed.
Frequency/	Frequency	350 to 2700 MHz
Modulation		For the frequencies below 500 MHz, only the
measurement		following range meets the specifications:
		452.5 to 457.5 MHz (LTE Operating Band31)
	Input level	–30 to +35 dBm (Main1/2)
	Carrier frequency accurac	у
		±(Set frequency ×Reference oscillator accuracy +10 Hz)
	Modulation accuracy	
	Residual vector error	≤2.5% (When one DPCCH signal and one DPDCH
		signal are input)
Amplitude	Frequency	350 to 2700 MHz
measurement		For the frequencies below 500 MHz, only the
		following range meets the specifications:
		452.5 to 457.5 MHz (LTE Operating Band31)
	Input level	–65 to +35 dBm (Main1/2)
	Measurement accuracy	±0.5 dB (–30 to +35 dBm),
		typ. ±0.3 dB (–30 to +35 dBm),
		±0.7 dB (-55 to -30 dBm),
		±0.9 dB (-65 to -55 dBm),
		after calibration 10 to 40°C
	Linearity	$\pm 0.2 \text{ dB} (-40 \text{ to } 0 \text{ dB}, \ge -55 \text{ dBm}),$
	Deletive messurement en	±0.4 dB (−40 to 0 dB, ≥−65 dBm),
	Relative measurement en	ui Range <2 dB
		$t_{\rm VD} = 0.000$ to 0 dB >=50 dBm)
	Measurement object	DPCH, PRACH

Item	Specifications	
Occupied bandwidth	Frequency	350 to 2700 MHz
		For the frequencies below 500 MHz, only the
		following range meets the specifications:
		452.5 to 457.5 MHz (LTE Operating Band31)
	Input level	–10 to +35 dBm (Main1/2)
Adjacent channel	Frequency	350 to 2700 MHz
leakage power		For the frequencies below 500 MHz, only the
		following range meets the specifications:
		452.5 to 457.5 MHz (LTE Operating Band31)
	Input level	–10 to +35 dBm (Main1/2)
	Measurement range	≥50 dB (±5 MHz), ≥55 dB (±10 MHz)
RF signal generator	Output frequency	300 to 2700 MHz (1 Hz steps)
	Channel level (CPICH, P-CO	CPCH, SCH, PICH, DPCH, S-CCPCH, AICH)
		Off, –30.0 to 0.0 dB (0.1 dB steps,
		Relative level with Ior (Total power))
	Channel level (OCNS)	Off, automatic setting
	Channel level accuracy	±0.2 dB
		(Relative level accuracy with Ior (Total power))
	AWGN level	Off, –20 to +5 dB (0.1 dB steps,
		Relative level with Ior (Total power))
	AWGN level accuracy	±0.2 dB
		(Relative level accuracy with Ior (Total power))
Error rate	Function	Applying PN9 or PN15 pattern to DTCH
measurement	Measurement item	BER, BLER
	BER measurement object	
		Loop Back data applied to uplink DTCH and serial
		data input from the call processing I/O port on the
		rear panel
	BLER measurement objec	
		Loop Back data applied to uplink DTCH
Call processing	Call control	Location registration, call origination, call
		termination, handover, network-side release,
		UE-side release (Execution of the operation
		iudament can be performed)
		Output lovel Loopback (UE control conforming to
		the 3GPP standard can be performed.)

Table 1.1.2-1Specifications for MX882100C W-CDMA Measurement Software(Cont'd)

Item	Specifications	
Function	End-to-end communications test between a handset connected to the MT8821C and UE. Encode the voice from Audio Input, Output the decoded voice to AF Output. Encode the tone signal and Output the tone signal to AF Output. Measure the voice signal from AF Input and decoded voice signal.	
Voice codec	AMR 12.2 kbps	
Codec level adjustment	Encoder input gain Handset microphone volu Handset speaker volume	-3.00 to 3.00 dB, 0.01 dB steps ume 0, 1, 2, 3, 4, 5 0, 1, 2, 3, 4, 5
AF output	Frequency range Accuracy Level setting range	30 Hz to 10 kHz, Resolution 1 Hz ±(Setting Frequency × Reference oscillator accuracy +0.1 Hz) 0 to 5 Vpeak (AF Output connector) 1 m)((c5 Vpeak), 100 v)((c500 m)(peak)
	Accuracy	10 μV (≤50 mVpeak), 100 μV (≤500 mVpeak), 10 μV (≤50 mVpeak) ±0.2 dB (≥10 mVpeak, ≥50 Hz), ±0.3 dB (≥10 mVpeak, <50 Hz)
	Waveform distortion	Band at ≤30 kHz ≤–60 dB (≥500 mVpeak, ≤5 kHz), ≤–54 dB (≥70 mVpeak)
	Max. output current	≤1 Ω 100 mA
AF input	Frequency range Input voltage range Max. allowable input volta	50 Hz to 10 kHz 1 mVpeak to 5 Vpeak (AF Input connector) age 30 Vrms
	Frequency measurement	accuracy ±(Reference oscillator accuracy+0.5 Hz)
	Level measurement accu	racy ±0.2 dB (≥10 mV peak, ≥50 Hz) ±0.4 dB (≥1 mV peak, ≥1 kHz)
	SINAD measurement	Frequency at 1 kHz ≥60 dB (≥1000 mV peak) ≥54 dB (>50 mV peak) ≥46 dB (≥10 mV peak)
	Distortion rate measurem	nent Frequency at 1 kHz ≤–60 dB (≥1000 mV peak) ≤–54 dB (>50 mV peak)
	Input impedance	≤–46 dB (≥10 mV peak) 100 kΩ

Table 1.1.2-2 Specifications for MX882100C-001 W-CDMA Voice Codec

Item	Specifications	
Function	Data transfer with external UE via the Ethernet port on the W-CDMA measurement hardware	
External Packet Data	Channel Coding	Packet
	DTCH Data Pattern	External PPP Packet, External IP Packet
	Max. transfer rate (Downlink)	
	W-CDMA:	384 kbps
	HSDPA:	388 kbps (16QAM),
		267 kbps (QPSK)

Table 1.1.2-3 Specifications for MX882100C-002 W-CDMA External Packet Data

Table 1.1.2-4 MX882100C-003 W-CDMA Video Phone Test

Item	Specifications
Function	End-to-end video communication tests by connecting the MT8821C's 10Base-T 1 and 2 ports (Phone1 and Phone2) with each other, and connecting MT8821C with two sets of UE via two RE ports

Table 1.1.2-5 Specifications for MX882100C-005 W-CDMA A-GPS

Item	Specifications
Function	A-GPS tests defined in the 3GPP specifications

Item	Specifications				
Function	 RF TRX tests (Tx measurement and Rx measurement) related to HSPA and HSPA Evolution Throughput tests related to HSDPA on the Fixed Reference Channel (H-Se 6 or 8) or at the peak rate of Category 6, 8, 9, 10, 13 or 14 UE 				
Amplitude measurement	This item depends on th Measurement object	e MX882100C's performance. DPCH, HS-DPCCH, E-DPCCH, E-DPDCH			
Throughput measurement	Function	 Throughput measurement using Fixed Reference Channel (H-Set) Throughput measurement using "FRC (H-Set 6 or 8)" and "HS-SCCH or HS-PDSCH equivalent to the 			
	Measurement object	peak rate of Category 6, 8, 9, 10, 13 or 14 UE" ACK and NACK applied to HS-DPCCH			
Call processing	Call control	Location registration, Fixed Reference Channel, E-DCH RF Test (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)			
	UE control	Output level (UE control conforming to the 3GPP standard can be performed.)			
	Monitoring	E-DCH throughput (Throughput measurement of E-DCH by monitoring E-TFCI included in the uplink E-DPCCH)			

Table 1.1.2-6 Specifications for MX882100C-019 HSPA Measurement Software

Table 1.1.2-7 Specifications for MX882100C-032 DC-HSDPA Measurement Software

Item	Specifications			
Function	RF RX tests (Rx measurem	nent) related to DC-HSDPA		
Throughput measurement	FunctionThroughput measurement that uses HS-SCHS-PDSCH equivalent to the peak rate of Ca22 or 24 UE			
	Measurement object	ACK and NACK applied to HS-DPCCH		
CQI measurement	Measurement object	Periodically reported CQI value applied to HS-DPCCH		
Call processing	Call control	Location registration, Fixed reference channel (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)		
	UE control	Output level (UE control conforming to the 3GPP standard can be performed.)		

Item	Specifications				
Function	RF TX tests (Tx measurement) related to DC-HSUPA				
Amplitude	This item depends on the MX882100C's performance.				
measurement	Measurement object	DPCH, HS-DPCCH, E-DPCCH, E-DPDCH			
Call processing	Call control	Location registration, E-DCH RF Test (Execution of the operation conforming to the 3GPP standard and pass/fail judgment can be performed.)			
	UE control	Output level (UE control conforming to the 3GPP standard can be performed.)			

 Table 1.1.2-8
 Specifications for MX882100C-033 DC-HSUPA Measurement Software

1.2. 3GPP Measurement Specification Table

1.2.1. MX882000C/MX882100C - MT8820B/20C/21C W-CDMA Measurement Software

	Item (TS 34.121 V9.4.0)	Comment	
5	Transmitter Characteristics		\searrow
5.2	Maximum Output Power		$\sqrt{\sqrt{1}}$
5.2A	Maximum Output Power with HS-DPCCH (Release 5 only)	MX882000C-011	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.2AA	Maximum Output Power with HS-DPCCH (Release 6 and later)	MX882000C-011	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.2B	Maximum Output Power with HS-DPCCH and E-DCH	MX882000C-021	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.2BA	UE Maximum Output Power for DC-HSUPA(QPSK)	MX882000C-033	$\sqrt{}$
		MX882100C-033	
5.2BB	UE Maximum Output Power for DC-HSUPA(16QAM)	MX882000C-033	$\sqrt{}$
		MX882100C-033	
5.2C	UE relative code domain power accuracy	MX882000C-011	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.2D	UE Relative Code Domain Power Accuracy for HS-DPCCH and	MX882000C-021	$\sqrt{\sqrt{1}}$
	EDCH	MX882100C-019	
5.2DA	UE Relative Code Domain Power Accuracy for DC-HSUPA with	MX882000C-033	$\sqrt{\sqrt{1}}$
	QPSK	MX882100C-033	
5.2E	UE Relative Code Domain Power Accuracy for HS-DPCCH and	MX882000C-031	$\sqrt{\sqrt{1}}$
	E-DCH with 16QAM	MX882100C-019	
5.2EA	UE Relative Code Domain Power Accuracy for DC-HSUPA with	MX882000C-033	$\sqrt{\sqrt{1}}$
	ТБДАМ	MX882100C-019	
5.3	Frequency Error		$\sqrt{\sqrt{1}}$
5.3A	Frequency Error for DC-HSUPA	MX882000C-033	$\sqrt{\sqrt{1}}$
		MX882100C-033	
5.4	Output Power Dynamics in Uplink		
5.4.1	Open Loop Power Control in Uplink		$\sqrt{}$
5.4.1A	Open Loop Power Control in Uplink for DC-HSUPA	MX882000C-033	$\sqrt{}$
		MX882100C-033	
5.4.2	Inner Loop Power Control in Uplink		$\sqrt{}$
5.4.2A	Inner Loop Power Control in Uplink for DC-HSUPA	MX882000C-033	$\sqrt{}$
		MX882100C-033	
5.4.3	Minimum Output Power		$\sqrt{\sqrt{1}}$
5.4.4	Out-of-synchronisation handling of output power		$\sqrt{\sqrt{1}}$
5.4.4A	Out-of-synchronisation handling of output power for a UE		$\sqrt{}$
	which supports type1 for DCH		
5.5	Transmit ON/OFF Power		$\sqrt{\sqrt{1}}$
5.6	Change of TFC		$\sqrt{\sqrt{1}}$
5.7	Power setting in uplink compressed mode		$\sqrt{\sqrt{1}}$
5.7A	HS-DPCCH (Rel-6)	MX882000C-011	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.7A	HS-DPCCH Power Control (Rel-7 and later)	MX882000C-011	$\sqrt{\sqrt{1}}$

		MX882100C-019	
5.8	Occupied Bandwidth (OBW)		$\sqrt{\sqrt{1}}$
5.8A	Occupied Bandwidth (OBW) for DC-HSUPA	MX882000C-033	$\sqrt{\sqrt{1}}$
		MX882100C-033	
5.9	Spectrum emission mask		$\sqrt{\sqrt{1}}$
5.9A	Spectrum Emission Mask with HS-DPCCH	MX882000C-011	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.9B	Spectrum Emission Mask with E-DCH	MX882000C-021	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.9C	Additional Spectrum Emission Mask for DC-HSUPA(QPSK)	MX882000C-033	$\sqrt{\sqrt{1}}$
		MX882100C-033	
5.9D	Additional Spectrum Emission Mask for DC-HSUPA(16QAM)	MX882000C-033	$\sqrt{\sqrt{1}}$
		MX882100C-033	
5.10	Adjacent Channel Leakage Power Ratio (ACLR)		$\sqrt{\sqrt{1}}$
5.10A	Adjacent Channel Leakage Power Ratio (ACLR) with HS-DPCCH	MX882000C-011	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.10B	Adjacent Channel Leakage Power Ratio (ACLR) with E-DCH	MX882000C-021	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.10C	Adjacent Channel Leakage Power Ratio (ACLR) with E-DCH for	MX882000C-033	$\sqrt{\sqrt{1}}$
	DC-HSUPA(QPSK)	MX882100C-033	
5.10D	Adjacent Channel Leakage Power Ratio (ACLR) with E-DCH for	MX882000C-033	$\sqrt{\sqrt{1}}$
	DC-HSUPA(16OAM)	MX882100C-033	
5.11	Spurious Emissions	Reguires SPA	
5.12	Transmit Intermodulation	Requires SG and SPA	\checkmark
5.13	Transmit Modulation		
5.13.1	Error Vector Magnitude (EVM)		$\sqrt{\sqrt{1}}$
5.13.1A	Error Vector Magnitude (EVM) with HS-DPCCH (Rel-6)	MX882000C-011	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.13.1A	Error Vector Magnitude (EVM) with HS-DPCCH (Rel-7 and later)	MX882000C-011	$\sqrt{\sqrt{1}}$
		MX882100C-019	
5.13.1AA	Error Vector Magnitude (EVM) and phase discontinuity with	MX882000C-011	$\sqrt{\sqrt{1}}$
	HS-DPCCH	MX882100C-019	
5.13.1AA	EVM and IO origin offset for HS-DPCCH and E-DCH with 16	NAV002000C 021	
А		MX882000C-031	$\sqrt{}$
	QAM	MX882000C-031 MX882100C-019	$\sqrt{}$
5.13.2	QAM Peak code domain error	MX882000C-031 MX882100C-019 Single Code Only	\ \ \
5.13.2 5.13.2A	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011	
5.13.2 5.13.2A	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019	
5.13.2 5.13.2A 5.13.2B	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021	
5.13.2 5.13.2A 5.13.2B	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021 MX882100C-019	
5.13.2 5.13.2A 5.13.2B 5.13.2BA	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH Relative Code Domain Error with HS-DPCCH and E-DCH	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021 MX882100C-019 MX882000C-033	
5.13.2 5.13.2A 5.13.2B 5.13.2BA	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021 MX882100C-019 MX882000C-033 MX882100C-033	11 11 11 11 11
5.13.2 5.13.2A 5.13.2B 5.13.2BA 5.13.2C	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH Relative Code Domain Error with HS-DPCCH and E-DCH for DC-HSUPA Relative Code Domain Error for HS-DPCCH and E-DCH with	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021 MX882100C-019 MX882000C-033 MX882000C-033 MX882000C-031	11 11 11 11 11 11 11
5.13.2 5.13.2A 5.13.2B 5.13.2BA 5.13.2C	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH Relative Code Domain Error with HS-DPCCH and E-DCH Relative Code Domain Error with HS-DPCCH and E-DCH for DC-HSUPA Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021 MX882100C-019 MX882000C-033 MX882100C-033 MX882100C-031 MX882100C-019	
5.13.2 5.13.2A 5.13.2B 5.13.2BA 5.13.2C 5.13.2C	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH Relative Code Domain Error with HS-DPCCH and E-DCH for DC-HSUPA Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM Relative Code Domain Error for HS-DPCCH and E-DCH 16QAM	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021 MX882100C-019 MX882000C-033 MX882100C-033 MX882100C-031 MX882100C-019 MX882000C-033	
5.13.2 5.13.2A 5.13.2B 5.13.2BA 5.13.2C 5.13.2CA	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH Relative Code Domain Error with HS-DPCCH and E-DCH for DC-HSUPA Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM Relative Code Domain Error for HS-DPCCH and E-DCH 16QAM for DC-HSUPA	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021 MX882100C-019 MX882000C-033 MX882100C-033 MX882100C-031 MX882100C-033 MX882100C-033	
5.13.2 5.13.2A 5.13.2B 5.13.2BA 5.13.2C 5.13.2CA 5.13.3	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH Relative Code Domain Error with HS-DPCCH and E-DCH for DC-HSUPA Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM Relative Code Domain Error for HS-DPCCH and E-DCH 16QAM for DC-HSUPA UE phase discontinuity	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021 MX882100C-019 MX882000C-033 MX882000C-033 MX882000C-031 MX882000C-033 MX882100C-033	
5.13.2 5.13.2A 5.13.2B 5.13.2BA 5.13.2C 5.13.2CA 5.13.3 5.13.4	QAM Peak code domain error Relative Code Domain Error with HS-DPCCH Relative Code Domain Error with HS-DPCCH and E-DCH Relative Code Domain Error with HS-DPCCH and E-DCH for DC-HSUPA Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM Relative Code Domain Error for HS-DPCCH and E-DCH 16QAM for DC-HSUPA UE phase discontinuity PRACH preamble guality	MX882000C-031 MX882100C-019 Single Code Only MX882000C-011 MX882100C-019 MX882000C-021 MX882100C-019 MX882000C-033 MX882100C-033 MX882100C-019 MX882100C-033 MX882100C-033	

5.13.5	In-band emission for DC-HSUPA	MX882000C-033	$\sqrt{\sqrt{1}}$
		MX882100C-033	
6	Receiver Characteristics		
6.2	Reference Sensitivity Level		$\sqrt{\sqrt{1}}$
6.2A	Reference Sensitivity Level for DC-HSDPA	MX882000C-032	$\sqrt{\sqrt{1}}$
		MX882100C-032	
6.2C	Reference Sensitivity Level for Single band 4C-HSDPA	MX882000C-034	$\sqrt{\sqrt{1}}$
		MX882100C-034	
6.2D	Reference Sensitivity Level for Dual band 4C-HSDPA	MX882000C-034	$\sqrt{\sqrt{1}}$
		MX882100C-034	
6.3	Maximum Input Level		$\sqrt{\sqrt{1}}$
6.3A	Maximum Input Level for HS-PDSCH Reception (16QAM)	MX882000C-011	$\sqrt{\sqrt{1}}$
		MX882100C-019	
6.3B	Maximum Input Level for HS-PDSCH Reception (64QAM)	MX882000C-031	$\sqrt{\sqrt{1}}$
		MX882100C-019	
6.3C	Maximum Input Level for DC-HSDPA Reception (16QAM)	MX882000C-032	$\sqrt{\sqrt{1}}$
		MX882100C-032	
6.3D	Maximum Input Level for DC-HSDPA Reception (64QAM)	MX882000C-032	$\sqrt{\sqrt{1}}$
		MX882100C-032	
6.3G	Maximum Input Level for 4C-HSDPA Reception (16QAM)	MX882000C-034	$\sqrt{\sqrt{1}}$
		MX882100C-034	
6.3GA	Maximum Input Level for 4C-HSDPA Reception (16QAM)	MX882000C-034	$\sqrt{\sqrt{1}}$
	(3carrier)	MX882100C-034	
6.3H	Maximum Input Level for 4C-HSDPA Reception (64QAM)	MX882000C-034	$\sqrt{\sqrt{1}}$
		MX882100C-034	
6.3HA	Maximum Input Level for 4C-HSDPA Reception (64QAM)	MX882000C-034	$\sqrt{\sqrt{1}}$
	(3carrier)	MX882100C-034	
6.4	Adjacent Channel Selectivity (ACS)	Requires SG	\checkmark
6.5	Blocking Characteristics	Requires SG	\checkmark
6.5A	Blocking Characteristics for DC-HSDPA	Requires SG	\checkmark
6.6	Spurious Response	Requires SG	\checkmark
6.6A	Spurious Response for DC-HSDPA	Requires SG	\checkmark
6.7	Intermodulation Characteristics	Requires SG	\checkmark
6.7A	Intermodulation Characteristics for DC-HSDPA	Requires SG	\checkmark
6.8	Spurious Emissions	Requires SPA	\checkmark

 $\sqrt{1}$: Supported | $\sqrt{1}$: Requires external equipment (SPA or SG) | F: Future Support | -: Not Supported

	Item	Comment	
7	Performance requirements		
7.2	Demodulation in Static Propagation conditions		$\sqrt{}$
7.3	Demodulation of DCH in Multi-path Fading Propagation	Requires Fading	\checkmark
	conditions	Simulator Except test 13 to 16	
7.4	Demodulation of DCH in Moving Propagation conditions	Requires Fading	\checkmark
		Simulator	
7.5	Demodulation of DCH in Birth-Death Propagation conditions	Requires Fading	\checkmark
		Simulator	
7.5A	Demodulation of DCH in high speed train condition	Requires Fading	\checkmark
		Simulator	
7.6	Demodulation of DCH in downlink Transmit diversity modes		_
7.7	Demodulation in Handover conditions		-
7.8	Power control in downlink		_
7.9	Downlink compressed mode		_
7.10	Blind Transport format detection		-
7.11	Demodulation of Paging Channel (PCH)		-
7.12	Detection of Acquisition Indicator (AI)		_
7.13	UE UL power control operation with discontinuous UL DPCCH transmission operation		-

 $\sqrt{1}$: Supported | $\sqrt{1}$: Requires external equipment (SPA or SG) | F: Future Support | -: Not Supported

1.2.2. W-CDMA Bands

The equipment supports W-CDMA Band I to XIX.

Note1: For MT8820B/C, Band IX requires MX882050C-009 W-CDMA Band IX, For MT8821C, this is available as standard.

Note2: For MT8820B/C, Band XI requires MX882050C-008 W-CDMA Band XI, For MT8821C, this is available as standard.

Note3: For MT8820B/C, Band XII, XIII, XIV, XIX, XX, XXI require MX882050C-007 W-CDMA Band XII, XIII, XIV, XIX, XX, XXI. For MT8821C, this is available as standard.

1.3. TRX Measurement (Fundamental Measurement)

The control software is presupposed to have been created using GPIB. See the operation manual for details of GPIB commands and manual operations. GPIB commands are in bold red.

1.3.1. Connection with Test Loop Mode

Measurement is performed with Test Loop Mode1. The connection procedures are shown below.

By turning off ATT Flag, the UE can stop location registration (only inside registered network). If location registration is not needed, turn off the ATT Flag (**ATTFLAG OFF**) before turning on UE power. For optimum measurement, connection should be executed after turning off the Measurement Report (**MEASREP OFF**).

- 1. Execute **PRESET_3GPP** to preset parameter for 3GPP.
- 2. Execute **INTEGRITY ON** to set [Integrity Protection] to [On].
- 3. Execute **DRXCYCLNG 64** to set [DRX Cycle Length] to [64] Frame (= 640 ms).
- 4. Turn on the UE power.
- 5. Execute CALLSTAT? and wait until the response becomes 2 (= Idle (Regist)).
- 6. Execute **CALLSA** to connect with Test Loop Mode1.
- 7. Execute **CALLSTAT**? and wait until the response becomes 7 (= Test Loop Mode 1).

1.3.2. Disconnection with Test Loop Mode

- 1. Execute **CALLSO** to disconnect with Test Loop Mode1.
- 2. Execute CALLSTAT? and wait until the response becomes 2 (= Idle(Regist)).

1.3.3. Channel Switching using Handover

Usually, measurement is performed at three frequency points (L, M, H). In this case, the Channel can be switched quickly without reconnection by switching it at handover with a higher output level. When a GPIB command is sent during handover, it waits until handover ends.

- 1. Execute TRX measurement at M channel.
- 2. Execute CHAN 9613 to handover to L channel.
- 3. Execute TRX measurement.
- 4. Execute **CHAN 9887** to handover to H channel.
- 5. Execute TRX measurement.

1.3.4. Selecting Test Items

Set unnecessary items, such as BER and BLER measurements (**BER_MEAS OFF**, **BLER_MEAS OFF**), to off to reduce measurement time.

Execute **ALLMEASITEMS_OFF** to set all measurements to off.

1.3.5. 5.2 Maximum Output Power

- 1. Connect with Test Loop Mode1.
- 2. Execute ILVL 35.0 to set Input Level to [+35.0] dBm.
- 3. Execute OLVL -106 to set [Output Level] to [-106] dBm.
- 4. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 5. Execute PWR_MEAS ON to set [Power Measurement] to [On].
- 6. Execute **PWR_AVG 20** to set [Average Count] of power measurement to [20] times.
- 7. Execute **SWP** to perform power measurement.
- 8. Execute **AVG_POWER?** to read the power measurement result.
- 9. Confirm the measurement result is 24 dBm (Tolerance +1.7/-3.7 dB).

	(Mea	as. Count		20/	20)	
Avg.	Max	Min				
23.16	23.18	23.14	dBm			
207.0	207.9	206.1	m₩			
22.94	22.97	22.91	dBm			Ļ
197.0	198.3	195.6	m₩			
	Avg. 23.16 207.0 22.94 197.0	(Mea Avg. Max 23.16 23.18 207.0 207.9 22.94 22.97 197.0 198.3	(Meas. Count Avg. Max Min 23.16 23.18 23.14 207.0 207.9 206.1 22.94 22.97 22.91 197.0 198.3 195.6	Avg. Max Min 23.16 23.18 23.14 dBm 207.0 207.9 206.1 mW 22.94 22.97 22.91 dBm 197.0 198.3 195.6 mW	(Meas. Count : 20 / Avg. Max Min 23.16 23.18 23.14 dBm 207.0 207.9 206.1 mW 22.94 22.97 22.91 dBm 197.0 198.3 195.6 mW	Meas. Count 20 / 20) Avg. Max Min 23.16 23.18 23.14 dBm 207.0 207.9 206.1 mW 22.94 22.97 22.91 dBm 197.0 198.3 195.6 mW

TX Power means Mean power (5 MHz band), and Filtered Power means RRC filtered mean power.

1.3.6. 5.3 Frequency Error

Average measurement result is the average value of signed measurement results. Max and Min results must be used.

- 1. Connect with Test Loop Mode1.
- 2. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. Execute **OLVL -106** to set [Output Level] to [-106] dBm.
- 4. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 5. Execute FREQ_MEAS ON to set [Frequency Error] measurement to [On].
- 6. Execute **FREQ_AVG 20** to set [Average Count] of Frequency Error measurement to [20] times.
- 7. Execute **SWP** to perform Frequency Error measurement.
- 8. Execute MAX_CARRFERR? PPM to read the Frequency Error measurement result.
- 9. Execute **MIN_CARRFERR? PPM** to read the Frequency Error measurement result.
- 10. Confirm the measurement result is lower than (0.1 ppm + 10 Hz).

Max and Min results must be used for signed measurements such as Frequency Error.

Frequency Error		(Me	as. Count	1	20/	20)
Carrier Frequency	Avg. 1950.0000	007 MHz				
	Avg.	Max	Min			
Carrier Frequency Error	0.0068	0.0127	-0.0023	kHz		
	0,00	0.01	0.00	ppm		

1.3.7. 5.7 Power setting in uplink compressed mode

- 1. Connect with Test Loop Mode1. (Refer to 1.3.1.)
- 2. Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 3. Execute MEASOBJ COMPRESS to set [Measurement Object] to [Compressed Mode].
- 4. Execute **TPCSTEP 2** to set [TPC Step Size] to [2 dB].
- 5. Execute ILVL -36.0 to set [Input Level] to [-36.0] dBm.
- 6. Wait until the UE power is -36.0 dBm.
- 7. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].

[Pattern A(Up)]

- 8. Execute **ILP_TPC PAT_A_UP** to set [TPC Method] to [Pattern A(Up)].
- 9. Execute ILVL -16.0 to set [Input Level] to [-16.0] dBm.
- 10. Execute **SWP** to perform measurement.
- 11. Execute **COMPPASS?** to read the measurement result.
- 12. Confirm the measurement result is PASS.

<time domain="" measuremen<="" th=""><th>t> Output Main</th><th>Loop Mode 1</th><th>Phone-2</th><th>Phone-1 ₩-CDMA</th></time>	t> Output Main	Loop Mode 1	Phone-2	Phone-1 ₩-CDMA
Parameter	Time Domain	Point List		
End		UE Power :	-28,4 dBm	Point List
Com	pressed Mode(Int	ernal Trigger)		TPC Method
	Marker Off			Pattern A
Input Level Judgment				(up)
-16.0dBm Pass				TPC Method
				(Down)
				TPC Method
	····· processo	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	······	Pattern B
~~~~~~~~~~~~~~				
0.0000 [ms]	20.00	<u>'''</u>	40,0000	
C.COOC [III3]	20,000	~	40.0000	
No. (Slot A - Slot E	) Power [dB]	Slot A Power[dBm]	Slot B Power[dBm]	
2 Slot 24 - Slot 16	-10.74	-23.44	-12.70 🔺	
7 Slot 11 - Slot 10	2.92	-27.40	-30.32	
7 Slot 12 - Slot 11	2.99	-24.41	-27.40	
7 Slot 14 - Slot 12	2.90	-21,40	-24.41	
	2,00	45 04	40 50	<u>1</u> Z

#### [Pattern A(Down)]

- 13. Execute ILP_TPC PAT_A_DOWN to set [TPC Method] to [Pattern A(Down)].
- 14. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 15. Execute ILVL 2.0 to set [Input Level] to [2.0] dBm.
- 16. Wait about 30ms until the UE power becomes [2.0] dBm.
- 17. Execute **SWP** to perform measurement.
- 18. Execute **COMPPASS?** to read the measurement result.
- 19. Confirm the measurement result is PASS.

≺Time Domain Measuremen	t> Output Main	Loop Mode 1	Phone-2	Phone-1 W-CDMA
Parameter	Time Domain	Point List		
End		UE Power :	1.2 dBm	Point List
	oressed Mode(Int Marker Off	ernal Trigger)		TPC Method Pattern A (Up)
2.0 dBm Pass			·····	TPC Method Pattern A (Down)
			-	TPC Method Pattern B
		·····	-;; -;;	
0.0000 [ms]	20.000		40.0000	
No. (Slot A - Slot E 3 Slot 24 - Slot 16	i) Power [dB] 5 10.92	Slot A Power[dBm]S -5.72	lot B Power[dBm] −16.64	
9 Slot 11 - Slot 10 9 Slot 12 - Slot 11 9 Slot 13 - Slot 12	-3.09 -3.05 -2.94	-1.68 -4.73 -7.67	1.41 -1.68 -4.73	
9 Slot 14 - Slot 13	-2.96	-10.63	-7.67	12

[Pattern B]

- 20. Execute **ILP_TPC PAT_B** to set [TPC Method] to [Pattern B].
- 21. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 22. Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 23. Wait about 30ms until the UE power becomes [-10.0] dBm.
- 24. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 25. Execute **SWP** to perform measurement.
- 26. Execute **COMPPASS?** to read the measurement result.
- 27. Confirm the measurement result is PASS.

<time domain="" measurement=""> Output Main</time>	Loop Mode 1	Phone-2	Phone-1 W-CDMA
Parameter Time Domain	Point List		
End	UE Power :	-10.4 dBm	Point List
Compressed Mode(I	nternal Trigger)		TPC Method
Marker Off			Pattern A (Ub)
Input Level Judgment :			TPC Method
-10.0dBm Pass			Pattern A
			(Down)
	- manufacture		TPC Method
			Pattern B
	· · · · · · · · · · · · · · · · · · ·		
		.÷	
<mark>-</mark>			
<mark>-</mark>		· · · · · · · · · · · · · · · · · · ·	
0.0000 [me] 20.0	1000	40,0000	
20.1		40.0000	
No. (Slot A - Slot B) Power [dB]	Slot A Power[dBm]Sl	lot B Power[dBm]	
1 Slot 15 - Slot 14 2.9	74 -15.68	-18.62	
6 Slot 45 - Slot 44 -25	39 -18.60	-15, 71	
	10.00	10.11	
			12

#### 1.3.8. 5.8 Occupied Bandwidth

- 1. Connect with Test Loop Mode1.
- 2. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. Execute **OLVL -106** to set [Output Level] to [-106] dBm.
- 4. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 5. Execute **OBW_MEAS ON** to set [Occupied Bandwidth] measurement to [On].
- 6. Execute OBW_AVG 20 to set [Average Count] of Occupied Bandwidth measurement to [20] times.
- 7. Execute **SWP** to perform Occupied Bandwidth measurement.
- 8. Execute **OBW?** to read the Occupied Bandwidth measurement result.
- 9. Confirm the measurement result lower than 5 MHz.

Occupied Bandwidth View			(Meas.	Count :	20/	20)	
OBW	4.118	MHz					
Upper Frequency	2.059	MHz					
Lower Frequency	-2.059	MHz					
Center(Upper+Lower)/2	1950.000	MHz					

#### 1.3.9. 5.9 Spectrum Emission Mask

- 1. Connect with Test Loop Mode1.
- 2. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. Execute **OLVL -106** to set [Output Level] to [-106] dBm.
- 4. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 5. Execute SMASK_MEAS ON to set [Spectrum Emission Mask] measurement to [On].
- 6. Execute SMASK_AVG 20 to set [Average Count] of Spectrum Emission Mask measurement to [20] times.
- 7. Execute **SWP** to perform Spectrum Emission Mask measurement.
- 8. Execute SMASKPASS? to read the Spectrum Emission Mask measurement result.
- 9. Confirm the measurement result is PASS.

Spectrum Emission Mask	View		(Meas,	Count	80	20/	20)	
Template Judgment								
Judgment		Pass						

#### 1.3.10. 5.10 Adjacent Channel Leakage Power

- 1. Connect with Test Loop Mode1.
- 2. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. Execute **OLVL -106** to set [Output Level] to [-106] dBm.
- 4. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 5. Execute ADJ_MEAS ON to set [Adjacent Channel Power] measurement to [On].
- 6. Execute ADJ_AVG 20 to set [Average Count] of Adjacent Channel Power measurement to [20] times.
- 7. Execute **SWP** to perform Adjacent Channel Power measurement.
- 8. Execute AVG_MODPWR? LOW10 to read the Adjacent Channel Power measurement result.
- 9. Confirm the measurement result is lower than -42.2 dB.
- 10. Execute **AVG_MODPWR? LOW5** to read the Adjacent Channel Power measurement result.
- 11. Confirm the measurement result is lower than -32.2 dB.
- 12. Execute AVG_MODPWR? UP5 to read the Adjacent Channel Power measurement result.
- 13. Confirm the measurement result is lower than-32.2 dB.
- 14. Execute **AVG_MODPWR? UP10** to read the Adjacent Channel Power measurement result.
- 15. Confirm the measurement result is lower than -42.2 dB.

Adjacent Channel Power		(Me	as.Count :	20/	20) 🔳
Leakage power due to Modu	lation				
Offset Freq.	Power				
	Avg.	Max	Min		
-10 MHz	-46.20	-46.00	-46.40 dB		
-5 MHz	-37.31	-36.99	–37.68 dB		
5 MHz	-36.50	-36.21	–36.80 <mark>dB</mark>		
10 MHz	-48.25	-48.06	-48.38 dB		
10 MHz	-48.25	-48.06	–48.38 dB		

#### 1.3.11. 5.13.1 Error Vector Magnitude (EVM)

- 1. Connect with Test Loop Mode1.
- 2. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. Execute **OLVL -106** to set [Output Level] to [-106] dBm.
- 4. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 5. Execute **INC_ORGNOFS ON** to set [EVM include Origin Offset] to [On].
- 6. Execute MOD_MEAS ON to set [Modulation Analysis] measurement to [On].
- 7. Execute MOD_AVG 20 to set [Average Count] of Modulation Analysis measurement to [20] times.
- 8. Execute **SWP** to perform modulation analysis measurement.
- 9. Execute AVG_EVM? to read the EVM (Error Vector Magnitude) measurement result.
- 10. Confirm the measurement result is lower than 17.5%.
- 11. Execute TOCALGO 2 to set [Power Control Algorithm] to [Algorithm 2].
- 12. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 13. Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 14. Wait about 200mm seconds until the UE power becomes [-18.0] dBm.
- 15. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 16. Repeat procedures 8, 9, and 10.

Modulation Analysis View		(Mea	as. Count	: 20/	20)	
	Avg.	Max	Min			
Error Vector Magnitude	7.31	7.44	7.13	%(rms)		
Peak Vector Error	17.34	18.51	15.87	8		
Phase Ennon	3.14	3.23	3.02	deg.(rms)		
Magnitude Error	4,83	4.88	4.76	%(rms)		
Origin Offset	-25.78	-25.52	-26.10	dB		
IQ Imbalance	102.75	103.51	101.99	%(I/Q)		
Timing Error	0.4	0.5	0.3	chip		
DPCCH/DPDCH Power Ratio	-5.48	-5.44	-5.51	dB		

#### 1.3.12. 6.2 Reference Sensitivity Level

- 1. Connect with Test Loop Mode1.
- 2. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. Execute OLVL -106 to set [Output Level] to [-106] dBm. (in case of Band I)
- 4. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 5. Execute **BER_MEAS ON** to set [Bit Error Rate] measurement to [On].
- 6. Execute **BER_SAMPLE 10000** to set [Number of Sample] at BER measurement to [10000] bits.
- 7. Execute **SWP** to perform BER measurement.
- 8. Execute **BER?** to read the BER measurement result.
- 9. Confirm the measurement result is lower than 0.001 (0.1%).

Bit Error Rate		
Bit Error Rate	0,0000 (= 0.	.00 %)
	0.00E+00	
Error Count	0	14
Transmitted/Sample	10717 / 1000	DO Bit
Judgment	Pass	

#### 1.3.13. Measurement Time Reduction using Batch Process

The above TRX test items can be measured under the same measurement condition, so measurement time can be reduced by performing all measurements simultaneously.

- 1. Connect with Test Loop Mode1.
- 2. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. Execute OLVL -106 to set [Output Level] to [-106] dBm.
- 4. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 5. Execute **INC_ORGNOFS ON** to set [EVM include Origin Offset] to [On].
- 6. Execute **ALLMEASITEMS ON,20,ON,20,ON,20,ON,20,ON,20,ON,20,OFF,1,ON,OFF**, to set all measurements to [On] other than [Code Domain Power] and [BLER Measurement], and to set [Average Count] to [20] times.
- 7. Execute **BER SAMPLE 10000** to set [Number of Sample] at BER measurement samples to [10000] bits.
- 8. Execute **SWP** to perform the measurement.
- 9. Execute **AVG_POWER?**, etc., to read the measurement result.

*There are items that cannot be measured with the same parameter.

#### 1.3.14. 5.4.3 Minimum Output Power

The procedure, how to measure Minimum Output Power on Fundamental Measurement screen, is shown below (It can be also measured simultaneously with Inner Loop Power Control in the Uplink STEP E, G).

- 1. Execute **SCRSEL FMEAS** to display the Fundamental Measurement screen.
- 2. Execute ILVL -30.0 to set [Input Level] to [-30.0] dBm.
- 3. Execute OLVL -93.0 to set [Output Level] to [-93.0] dBm.
- 4. Execute **TPCPAT ALLO** to set [Power Control Bit Pattern] to [ALL0].
- 5. Execute **PWR_MEAS ON** to set [Power Measurement] to [On].
- 6. Execute **PWR_AVG 20** to set [Average Count] of power measurement to [20] times.
- 7. Execute SWP to perform the measurement.
- 8. Execute **AVG_POWER?** to read the power measurement result.
- 9. Confirm the measurement result is lower than –49 dBm.

Power Measurement				207	20)	
Avg.	Max	Min				
-57.02	-56.93	-57.10	dBm			
1.985	2.025	1.950	n₩			
-58.92	-58.78	-59.05	dBm			
1.282	1.325	1.244	n₩			
	Avg. -57.02 1.985 -58.92 1.282	Avg.         Max           -57.02         -56.93           1.985         2.025           -58.92         -58.78           1.282         1.325	Avg.         Max         Min           -57.02         -56.93         -57.10           1.985         2.025         1.950           -58.92         -58.78         -59.05           1.282         1.325         1.244	Avg.         Max         Min           -57.02         -56.93         -57.10         dBm           1.985         2.025         1.950         n₩           -58.92         -58.78         -59.05         dBm           1.282         1.325         1.244         n₩	Avg.         Max         Min           -57.02         -56.93         -57.10         dBm           1.985         2.025         1.950         n₩           -58.92         -58.78         -59.05         dBm           1.282         1.325         1.244         n₩	Avg.         Max         Min           -57.02         -56.93         -57.10         dBm           1.985         2.025         1.950         nW           -58.92         -58.78         -59.05         dBm           1.282         1.325         1.244         nW

## 1.4. Open Loop Power Control Measurement

The following is measured using RACH with Time Mask measurement on the Time Domain Measurement screen.

#### On the Time Domain Measurement screen, RRC Filter Off (TDM_RRC OFF) corresponds to Mean power (5 MHz band), and RRC Filter On (TDM_RRC ON) corresponds to RRC filtered mean power.

- 1. Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 2. Execute MEASOBJ RACHTMSK to set [Measurement Object] to [RACH with Time Mask].
- 3. Execute **TIMSPAN 4.0MS** to set [Time Span] of Time Domain measurement to [4.0] ms.
- 4. Execute **TRGDELAY -1.0MS** to set [Trigger Delay] of Time Domain measurement to [-1.0] ms.
- 5. Execute MAXULPWR 24 to set [Maximum Allowed UL TX Power] to [24.0] dBm.
- 6. Execute **RABCONNECT OFF_FAST** to set [RAB connection] to [Off Fast].

Maximum Allowed TX Power is a standard parameter of Cell Selection and Reselection. Power Class must be set lower than Maximum Allowed TX Power, so the UE can perform Cell Selection and Reselection with Sensitivity Level. For example, when UE Power Class is 3, MAXULPWR is 24.0.

By turning off RAB connection, the call status can be returned to Idle without connecting RAB at Test Loop Mode connection.

#### 1.4.1. 5.4.1 Open Loop Power Control in Uplink (RX-middle)

- 1. Execute OLVL -65.7 to set [Output Level] to [-65.7] dBm.
- 2. Execute **CPICHPWR -3.9** to set [Downlink CPICH] to [-3.9] dB.
- 3. Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 4. Execute CPICHTXPWR 28 to set [Primary CPICH DL TX Power] to [+28] dBm.
- 5. Execute INTERFERENCE -101 to set [UL Interference] to [-101] dBm.
- 6. Execute **CONSTANT -10** to set [Constant Value] to [-10] dB.
- 7. Execute TDM_RRC OFF to set to [RRC Filter] to [Off].
- 8. Turn on UE power to perform Registration.
- 9. Execute **SWPANDPG** to perform RACH measurement with Test Loop Mode.
- 10. Execute **RACHPWR_AVG?** to read the RACH power measurement result.
- 11. Confirm the measurement result is –13.4 dBm (±10 dB).

RACH	with Time Ma	sk(Rising V	<mark>(ideo) _</mark>		
	Average On F	P <mark>ower: -12</mark>	. 77 <mark>dBm</mark>	EVM:	7.81 <mark>%</mark>
Input Level : Judgment :	Burst Off Po	ower : Prej	–72.14 <mark>d</mark>	3m Post	-68.04 <mark>dBm</mark>
0.00 dBm <mark>Pass</mark>	Time Of The	First "Fai	l" (		ms
		1			
1					
		12222022			
		No	and the second second	4.U	
1 0000 5-7	1.0	The second se	AN WAR AND	ALAN YAWAY HAY	
-1.0000 [ms]	1.0	000			3,0000

#### 1.4.2. 5.4.1 Open Loop Power Control in Uplink (RX Upper dynamic end)

- 1. Execute **OLVL -25.0** to set [Output Level] to [ovel]t dBm.
- 2. Execute **CPICHPWR -3.9** to set [Downlink CPICH] to [-3.9] dB.
- 3. Execute ILVL -25.0 to set [Input Level] to [ovel]e dBm.
- 4. Execute **CPICHTXPWR 19** to set [Primary CPICH DL TX Power] to [+19] dBm.
- 5. Execute **INTERFERENCE -75** to set [UL Interference] to [-75] dBm.
- 6. Execute **CONSTANT -10** to set [Constant Value] to [-10] dB.
- 7. Execute **TDM_RRC OFF** to set [RRC Filter] to [Off].
- 8. Turn on the UE to perform Registration.
- 9. Execute **SWPANDPG** to perform RACH measurement with Test Loop Mode.
- 10. Execute **RACHPWR_AVG?** to read the RACH power measurement result.
- 11. Confirm the measurement result is -37.1 dBm (±10 dB).

RACH with Time Mask(Rising Video)						
B and south the first of	Average On P	P <mark>ower: -</mark> 35	5.91 <mark>dBm</mark>	EVM:	8.69 <mark>%</mark>	
Input Level : Judgment :	Burst Off Po	ower : Prej	-71.84dE	om Post <mark>e</mark>	-67.49 <mark>dBm</mark>	
-25.0 dBm Pass	Time Of The	First "Fai	1" (		<mark>ms</mark>	
			1		1 1	
		1				
	kk					
╞╼╾╾╾┊╼╾╸┥┍╼╶┊╼╸					-+	
Mont	££	hundering	-	-	WWWWWWWWWW	
1 map minal	i	i	aaqaaaa			
-1.0000 [ms]	1.0	000			3,0000	

#### 1.4.3. 5.4.1 Open Loop Power Control in Uplink (RX-Sensitivity level)

- 1. Execute OLVL -65.7 to set [Output Level] to [-65.7] dBm.
- 2. Execute **CPICHPWR -3.9** to set [Downlink CPICH] to [-3.9] dB.
- 3. Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 4. Execute **CPICHTXPWR 19** to set [Primary CPICH DL TX Power] to [+19] dBm.
- 5. Execute **INTERFERENCE -110** to set [UL Interference] to [-110] dBm.
- 6. Execute **CONSTANT -10** to set [Constant Value] to [-10] dB.
- 7. Execute **TDM_RRC OFF** to set [RRC Filter] to [Off].
- 8. Turn on the UE and perform Registration.
- 9. Execute **OLVL -106.7** to set [Output Level] to [-106.7] dBm.
- 10. Execute **SWPANDPG** to perform RACH measurement with Test Loop Mode.
- 11. Execute **RACHPWR_AVG?** to read the RACH power measurement result.
- 12. Confirm the measurement result is +8.9 dBm (±10 dB).

RACH	RACH with Time Mask(Rising Video)						
	Average On Power:	9.09 <mark>dBm EVM</mark>	7.87 <mark>%</mark>				
Input Level : Judgment :	Burst Off Power :	Pre -47.57dBm Po:	st <mark>-47.60</mark> dBm				
25.00 dBm <mark>Pass</mark>	Time Of The First	"Fail" : -	ms				
		la la la					
-1.0000 [ms]	1,0000		3,0000				

#### 1.4.4. 5.5 Transmit ON/OFF Power

Due to dynamic range limits (40 dB), the On Power and Off Power cannot be measured simultaneously, so measurement must be performed twice by changing the Input level. An example of how to measure a UE in Power Class 3 is shown below.

- 1. Execute OLVL -65.7 to set [Output Level] to [-65.7] dBm.
- 2. Execute **CPICHPWR -3.9** to set [Downlink CPICH] to [-3.9] dB.
- 3. Execute ILVL 30.0 to set [Input Level] to [+30.0] dBm.
- 4. Execute **CPICHTXPWR 19** to set [Primary CPICH DL TX Power] to [+19] dBm.
- 5. Execute **INTERFERENCE -95** to set [UL Interference] to [–95] dBm.
- 6. Execute **CONSTANT -10** to set [Constant Value] to [-10] dB.
- 7. Execute **TEMPPOS ON** to set [Template] at RACH Parameter to [On].
- 8. Execute **TDM_RRC OFF** to set [RRC Filter] to [Off].
- 9. Turn on the UE and perform Registration.
- 10. Execute OLVL -106.7 to set [Output Level] to [-106.7] dBm.
- 11. Execute **SWPANDPG** to perform RACH measurement in Test Loop Mode.
- 12. Execute **RACHPWR_AVG?** to read the RACH power measurement result.
- 13. Confirm the measurement result is 24.0 dBm (Tolerance +1.7/–3.7 dB).

RACH	with Time Mask(Ri:	sing Video)		
	Average On Power:	23.20 dBm	EVM:	8.01 <mark>%</mark>
Input Level : Judgment :	Burst Off Power :	Pre -42.59	dBm Post	-42.79 <mark>dBm</mark>
30.00 dBm Pass	Time Of The First	t "Fail" 💠 🥲		
		gaaaagiaaa	aaaĝaaa:	
┣	·			
	·			-+
-1.0000 [ms]	1.0000			3,0000

- 14. Disconnect with Test Loop Mode.
- 15. Execute ILVL -20.0 to set [Input Level] to [ovel]e dBm.
- 16. Execute **TEMPPOS OFF** to set [Template] at RACH Parameter to [Off].
- 17. Execute **TDM_RRC ON** to set [RRC Filter] to [On].
- 18. Execute **SWPANDPG** to perform RACH measurement in Test Loop Mode.
- 19. Execute **RACHOFFPWR_AVG?** to read the Burst Off Power measurement result.
- 20. Confirm the measurement result is lower than -55 dBm.



#### 1.4.5. 5.13.4 PRACH Preamble Quality

Although RACH Sub Channel and PRACH Signature cannot be specified, the EVM and Frequency Error of RACH can be measured. An example of how to measure a UE in Power Class3 is shown below.

- 1. Execute **OLVL -98.1** to set [Output Level] to [-ovel] dBm.
- 2. Execute CPICHPWR -3.9 to set [Downlink CPICH] to [-3.9] dB.
- 3. Execute ILVL 30.0 to set [Input Level] to [+30.0] dBm.
- 4. Execute CPICHTXPWR 24 to set [Primary CPICH DL TX Power] to [+24] dBm.
- 5. Execute **INTERFERENCE -92** to set [UL Interference] to [–92] dBm.
- 6. Execute **CONSTANT -10** to set [Constant Value] to [-10] dB.
- 7. Turn on the UE and perform Registration.
- 8. Execute **SWPANDPG** to perform RACH measurement in Test Loop Mode.
- 9. Execute **RACHEVM?** to read the RACH EVM measurement result.
- 10. Confirm the measurement result is lower than 17.5%.
- 11. Execute **RACHFERR? PPM** to read the RACH Frequency Error measurement result.
- 12. Confirm the measurement result is lower than (0.1 ppm + 10 Hz).



#### 1.4.6. Continuous Measurement of Open Loop Power Control

Open Loop Power Control measurement is performed by changing Primary CPICH DL TX Power, UL Interference and Constant Value. However, these parameters are for broadcast information, so some time is required to reflect the parameter changes at the UE side. To perform continuous Open Loop Power Control measurement, the parameters must be reflected at the UE using one of following methods.

1) Wait about 5 s after changing parameters (when changing parameters, the equipment sends BCCH modification info to the UE as PAGING TYPE1 message. It takes about 5 s until the UE reflects the changes).

2) Turn on the UE power again after changing the parameters and wait until the UE starts Registration.

3) In addition to changing the above parameters, change the LAC parameter and wait until the UE starts Registration.

The UE can be notified quickly about the change of broadcast information by executing **DRXCYCLNG 64** to set [CN DRX Cycle Length] to [64] Frame, which is the minimum value.
## 1.5. Inner Loop Power Control Measurement

## 1.5.1. 5.4.2 Inner Loop Power Control in the Uplink

- 1. Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 2. Execute MEASOBJ ILPC_AUTO to set [Measurement Object] to [Inner Loop Power Control (Auto)].
- 3. Execute **OLVL -93** to set [Output Level] to [-93] dBm.
- 4. Connect using Test Loop Mode1.
- 5. Execute ILPC_MEAS AUTO_ALL to set [ILPC Measurement Method] to [Auto (Step All)].
- 6. Execute **SWP** to perform measurement.
- 7. Execute **ILPC_PASS? ALL** and check the measurement result is PASS.



## 1.5.2. 5.13.3 UE Phase Discontinuity

UE phase discontinuity uses Phase Discontinuity measurement on the Time Domain Measurement screen. Due to dynamic range limits (40 dB), measurement cannot be performed once; it must be executed four times with different Input Levels.

- 1. Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 2. Execute MEASOBJ PHASEDISC to set [Measurement Object] to [Phase Discontinuity].
- 3. Execute **SLOTLIST ON** to display slot list.
- 4. Execute **REGSLOTLIST 0-359** to register Slot0~Slot359 for the slot list.
- 5. Execute **TIMESPAN 240.0MS** to set [Time Span] of Time Domain measurement to [240.0] ms.
- 6. Execute OLVL -93 to set [Output Level] to [-93] dBm.
- 7. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].
- 8. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 9. Execute **TDM_RRC OFF** to set [RRC Filter] to [Off].
- 10. Connect with Test Loop Mode1.
- 11. Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 12. Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [ALL1].

#### [5Down4Up Step1]

- 13. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 14. Execute **ILVL 25.0** to set [Input Level] to [+25.0] dBm.
- 15. Execute **ILP_TPC 5DW4UP** to set [TPC Method] to [5Down4Up].
- 16. Execute ILP_CMDSLOT 5DW4UP,360 to set [Length] of 5Down4Up to [360] Slot.
- 17. Execute **SWP** to perform measurement.
- 18. Execute **SLOT_PHSAEDISC? ALL** to read the Phase Discontinuity measurement result.
- 19. Confirm the measurement result is lower than 36deg.
- When the result is over 36deg under 66deg, check whether the next four results are consecutively under 36deg.
- 20. Execute **SLOT_EVM? ALL** to read the EVM measurement result.
- 21. Confirm the measurement result is lower than 17.5%.
- 22. Execute **SLOT_FERR? ALL** to read the Frequency Error measurement result.
- 23. Confirm the measurement result is lower than (0.1 ppm + 10 Hz).



#### [5Down4Up Step2]

- 24. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 25. Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 26. Execute **ILP_TPC 5DW4UP** to set [TPC Method] to [5Down4Up].
- 27. Execute ILP_CMDSLOT 5DW4UP,360 to set [Length] of 5Down4Up to [360] Slot.
- 28. Execute **SWP** to perform measurement.
- 29. Execute **SLOT_PHSAEDISC? ALL** to read the Phase Discontinuity measurement result.
- 30. Confirm the measurement result is lower than 36deg.
- When the result is over 36deg and under 66deg, check whether the next four results are consecutively under 36deg.
- 31. Execute **SLOT_EVM? ALL** to read the EVM measurement result.
- 32. Confirm the measurement result is lower than 17.5%.
- 33. Execute **SLOT_FERR? ALL** to read the Frequency Error measurement result.
- 34. Confirm the measurement result is lower than (0.1 ppm + 10 Hz).



#### [5Up4Down Step1]

- 35. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 36. Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 37. Execute ILP_TPC 5UP4DW to set [TPC Method] to [5Up4Down].
- 38. Execute ILP_CMDSLOT 5UP4DW,360 to set [Length] of 5Up4Down to [360] Slot.
- 39. Execute **SWP** to perform measurement.
- 40. Execute **SLOT_PHSAEDISC? ALL** to read the Phase Discontinuity measurement result.
- 41. Confirm the measurement result is lower than 36deg.
- When the result is over 36deg and under 66deg, check whether the next four results are consecutively under 36deg.
- 42. Execute **SLOT_EVM? ALL** to read the EVM measurement result.
- 43. Confirm the measurement result is lower than 17.5%.
- 44. Execute **SLOT_FERR? ALL** to read the Frequency Error measurement result.
- 45. Confirm the measurement result is lower than (0.1 ppm + 10 Hz).



#### [5Up4Down Step2]

- 46. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 47. Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 48. Execute **ILP_TPC 5UP4DW** to set [TPC Method] to [5Up4Down].
- 49. Execute ILP_CMDSLOT 5UP4DW,360 to set [Length] of 5Up4Down to [360] Slot.
- 50. Execute **SWP** to perform measurement.
- 51. Execute **SLOT_PHSAEDISC? ALL** to read the Phase Discontinuity measurement result.
- 52. Confirm the measurement result is lower than 36deg.
- When the result is over 36deg and under 66deg, check whether the next four results are consecutively under 36deg.
- 53. Confirm the measurement result is lower than 17.5%.
- 54. Execute **SLOT_FERR? ALL** to read the Frequency Error measurement result.
- 55. Confirm the measurement result is lower than (0.1 ppm + 10 Hz).



## **1.6. Other Measurements**

#### 1.6.1. 5.4.4 Out-of-synchronization of output power.

# 5.4.4AOut-of-synchronization handling of output power for a UE which supports type1 for DCH

This measurement requires an exact time change. We recommend automated measurement using a PC controller.

- 1. Execute CALLDROP OFF to set [Call Drop] to [Off].
- 2. Execute **UETIM_T313 15** to set [T313] to [15] s.
- 3. Execute UETIM_N313 200 to set [N313] to [200].
- 4. Turn on the UE to execute Registration.
- 5. Connect with Test Loop Mode1.
- 6. Execute ILVL 25.0 to set [Input Level] to [25.0] dBm.
- 7. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 8. Execute OLVL -61.0 to set [Output Level] to [-61.0] dBm.
- 9. Execute AWGNLVL ON to set [AWGN Level] to [On].
- 10. Execute AWGNPWR 1.0 to set [Ior/Ioc ] to [-1.0] dB.
- 11. Execute **ALLMEASITEMS ON,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,0FF** to set [Power Measurement] to [On] and to set [Average Count] of Power measurement to [1] time.

#### [Step A]

- 12. (In case of 5.4.4) Execute **DDPCHPWR -16.6** to set [DPCH_Ec/Ior] to [-16.6] dB. (In case of 5.4.4A) Execute **DDPCHPWR -19.6** to set [DPCH_Ec/Ior] to [-19.6] dB.
- 13. Execute **SWP** to perform power measurement.
- 14. Execute AVG_POWER? to read the power measurement result.
- 15. Confirm the Maximum Output Power.

Power Measurement		(Mea	as. Count	:	20/	20)	
	Avg.	Max	Min				
TX Power	23.16	23.18	23.14	dBm			
	207.0	207.9	206.1	m₩			
Filtered Power	22.94	22.97	22.91	dBm			F
	197.0	198.3	195.6	m₩			

#### [Step B]

- 16. (In case of 5.4.4) Execute **DDPCHPWR -21.6** to set [DPCH_Ec/Ior] to [ Power.sul (In case of 5.4.4A) Execute **DDPCHPWR -24.6** to set [DPCH_Ec/Ior] to [e ower.sul
- 17. Wait 5 s.
- 18. Execute **SWP** to perform power measurement.
- 19. Execute **AVG_POWER?** to read the power measurement result.
- 20. Confirm voice calling is not disconnected.

	(Mea	as. Count		20/	20)	
Avg.	Max	Min				
23.16	23.18	23.14	dBm			
207.0	207.9	206.1	m₩			
22.94	22.97	22.91	dBm			F
197.0	198.3	195.6	m₩			
	Avg. 23.16 207.0 22.94 197.0	(Mex Avg. Max 23.16 23.18 207.0 207.9 22.94 22.97 197.0 198.3	Avg.         Max         Min           23.16         23.18         23.14           207.0         207.9         206.1           22.94         22.97         22.91           197.0         198.3         195.6	Avg.         Max         Min           23.16         23.18         23.14         dBm           207.0         207.9         206.1         mW           22.94         22.97         22.91         dBm           197.0         198.3         195.6         mW	Avg.         Max         Min         20/           Avg.         Max         Min         4           23.18         23.18         23.14         dBm           207.0         207.9         206.1         mW           22.94         22.97         22.91         dBm           197.0         198.3         195.6         mW	Avg.         Max         Min         20/         20)           Avg.         Max         Min         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4

[Step C]

- 21. (In case of 5.4.4) Execute **DDPCHPWR -28.4** to set [DPCH_Ec/Ior] to [ t disconn (In case of 5.4.4A) Execute **DDPCHPWR -31.4** to set [DPCH_Ec/Ior] to [e disconn
- 22. Wait 200 ms.
- 23. Execute **SWP** to perform power measurement.
- 24. Execute **AVG_POWER?** to read the power measurement result.
- 25. Confirm voice calling is disconnected (low level).
- 26. Wait 5 s.

	(Mea	as. Count		20/	20)	
Avg.	Max	Min				
-57.02	-56.93	-57.10	dBm			
1.985	2.025	1,950	n₩			
-58.92	-58.78	-59.05	dBm			
1.282	1.325	1.244	n₩			
	Avg. -57.02 1.985 -58.92 1.282	(Me: Avg. Max -57.02 -56.93 1.985 2.025 -58.92 -58.78 1.282 1.325	(Meas.         Count           Avg.         Max         Min           -57.02         -56.93         -57.10           1.985         2.025         1.950           -58.92         -58.78         -59.05           1.282         1.325         1.244	Avg.         Max         Min           -57.02         -56.93         -57.10         dBm           1.985         2.025         1.950         nW           -58.92         -58.78         -59.05         dBm           1.282         1.325         1.244         nW	(Meas. Count :         20 /           Avg.         Max         Min           -57.02         -56.93         -57.10         dBm           1.985         2.025         1.950         nW           -58.92         -58.78         -59.05         dBm           1.282         1.325         1.244         nW	Meas. Count         20 / 20)           Avg.         Max         Min           -57.02         -56.93         -57.10         dBm           1.985         2.025         1.950         nW           -58.92         -58.78         -59.05         dBm           1.282         1.325         1.244         nW

#### [Step D]

- 27. (In case of 5.4.4) Execute **DDPCHPWR -24.4** to set [DPCH_Ec/Ior] to [ sconnecte (In case of 5.4.4A) Execute **DDPCHPWR -27.4** to set [DPCH_Ec/Ior] to [e connecte
- 28. Wait 5 s.
- 29. Execute **SWP** to perform power measurement.
- 30. Execute **AVG_POWER?** to read the power measurement result.
- 31. Confirm voice calling is disconnected (low level).

Power Measurement		(Me	as. Count	: 20/	20)	
	Avg.	Max	Min			
TX Power	-57.02	-56.93	-57.10	dBm		
	1.985	2.025	1.950	n₩		
Filtered Power	-58.92	-58.78	-59.05	dBm		
	1.282	1.325	1.244	n₩		

[Step E]

- 32. (In case of 5.4.4) Execute **DDPCHPWR -17.6** to set [DPCH_Ec/Ior] to [ sconnecte (In case of 5.4.4A) Execute **DDPCHPWR -20.6** to set [DPCH_Ec/Ior] to [e connecte
- 33. Wait 200 ms.
- 34. Execute **SWP** to perform power measurement.
- 35. Execute **AVG_POWER?** to read the power measurement result.
- 36. Confirm voice calling is connected (high level).

Power Measurement		(Me	as. Count		20/	20)	
	Avg.	Max	Min				
TX Power	23.16	23.18	23.14	dBm			
	207.0	207.9	206.1	m₩			
Filtered Power	22.94	22.97	22.91	dBm			Ł
	197.0	198.3	195.6	m₩			

## 1.6.2. 5.4.4 Out-of-synchronisation of output power (Auto)

# 5.4.4AOut-of-synchronization handling of output power for a UE which supports type1 for DCH

- 1. Execute **UETIM_T313 15** to set [T313] to [15] s.
- 2. Execute UETIM_N313 200 to set [N313] to [200].
- 3. Turn on the UE to execute Registration.
- 4. Connect with Test Loop Mode1.
- 5. Execute OLVL -61.0 to set [Output Level] to [-61.0] dBm.
- 6. Execute AWGNLVL ON to set [AWGN Level] to [On].
- 7. Execute AWGNPWR 1.0 to set [Ior/Ioc ] to [-1.0] dB.
- 8. Execute **SCRSEL TDMEAS** and display the Time Domain Measurement screen.
- 9. Execute MEASOBJ OUTSYNC_AUTO to set [Measurement Object] to [Out of Synchronisation(Auto)].
- 10. Execute **SWP** to perform Out of Synchronisation measurement.

#### [Step A]

- 11. Execute **OUTSYNC_PASS? A** to read the Step A measurement result.
- 12. Confirm the measurement result is PASS. (UE transmitter is not switched off.)

	Out of Synchronis	ation(Auto)(Interr	nal Trigge
	DPCCH_Ec/Ion	UE Signal	
Step A	-16.6dB	On	Pass
Step B	-21.6dB	On	Pass
Step C	-28.4dB	Turns Off	Pass
Step E	-24.4dB	Off	Pass
Step F	-17.6dB	Turns On	Pass

#### [Step B]

- 13. Execute **OUTSYNC_PASS? B** to read the Step B measurement result.
- 14. Confirm the measurement result is PASS. (UE transmitter is not switched off.)

	Out of Synchronis	ation(Auto)(Inter	nal Trigger)	
	DPCCH_Ec/Ion	UE Signal		
Step A	-16.6dB	On	Pass	
Step B	-21.6dB	On	Pass	
Step C 👘	-28.4dB	Turns Off	Pass	
Step E	-24.4dB	Off	Pass	
Step F	-17.6dB	Turns On	Pass	

[Step C]

- 15. Execute **OUTSYNC_PASS? C** to read the Step C measurement result.
- 16. Confirm the measurement result is PASS. (UE transmitter has been switched off.)

	Out of Synchronis	ation(Auto)(Interi	nal Trigger)	
	DPCCH_Ec/Ion	UE Signal		
Step A	-16.6dB	On	Pass	
Step B	-21.6dB	On	Pass	
Step C 👘	-28.4dB	Turns Off	Pass	
Step E	-24.4dB	Off	Pass	
Step F	-17.6dB	Turns On	Pass	

[Step E]

- 17. Execute **OUTSYNC_PASS? E** to read the Step E measurement result.
- 18. Confirm the measurement result is PASS. (UE transmitter is not switched on.)

	Out of Synchronis	ation(Auto) (Inter	nal Trigger)	ſ
	DPCCH_Ec/Ion	UE Signal		
Step A	-16.6dB	On	Pass	
Step B	-21.6dB	On	Pass	
Step C	-28, 4dB	Turns Off	Pass	
Step E	-24.4dB	Off	Pass	
Step F	-17.6dB	Turns On	Pass	

[Step F]

- 19. Execute **OUTSYNC_PASS? F** to read the Step F measurement result.
- 20. Confirm the measurement result is PASS. (UE transmitter has been switched on.)

	Out of Synchronis	ation(Auto) (Interr	nal Trigger)	
	DPCCH_Ec/Ion	UE Signal		
Step A	-16.6dB	On	Pass	
Step B	-21.6dB	On	Pass	
Step C	-28.4dB	Turns Off	Pass	
Step E	-24.4dB	Off	Pass	
Step F	-17.6dB	Turns On	Pass	

## 1.6.3. 5.6 Change of TFC

- 1. Execute **TPCALGO 2** to set [Power Control Algorithm] to [Algorithm 2].
- 2. Execute **ILVL 0.0** to set [Input Level] to [0.0] dBm.
- 3. Connect with Test Loop Mode1.
- 4. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 5. Execute **DTCHPAT PN9** to set [DTCH Data Pattern] to [PN9].
- 6. Execute **ALLMEASITEMS ON,20,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,0FF** to set [Power Measurement] to [On] and to set [Average Count] to [20] times.
- 7. Execute **SWP** to perform power measurement.
- 8. Execute **AVG_POWER?** to read the power measurement result.

Power Measurement		(Mea	as. Count		20/	20)	
	Avg.	Max	Min				
TX Power	-8.74	-8.73	-8.76	dBm			
	133.5	133.9	133.0	u₩			
Filtered Power	-8.95	-8.92	-8.98	dBm			
	127.4	128.1	126.5	u₩			

- 9. Execute **DTCHPAT NODATA** to set [DTCH Data Pattern] to [No Data].
- 10. Execute **SWP** to perform power measurement.
- 11. Execute **AVG_POWER?** to read the power measurement result.
- 12. Confirm the result is ±7 dB (Tolerance ±2.3 dB) compared to the result of procedure 8.

Power Measurement		(Me	as. Count	1	20/	20)	
	Avg.	Max	Min				
TX Power	-15.43	-15.41	-15.46	dBm			
	28.63	28.77	28.47	u₩			
Filtered Power	-15.64	-15.61	-15.68	dBm			
	27.30	27.48	27.06	u₩			

## 1.6.4. 6.3 Maximum Input Level

- 1. Execute **TPCALGO 2** to set [Power Control Algorithm] to [Algorithm 2].
- 2. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 3. Connect with Test Loop Mode1.
- 4. Execute OLVL -25.7 to set [Output Level] to [-25.7] dBm.
- 5. Execute **CPICHPWR -10.0** to set [CPICH_Ec/Ior] to [-10.0] dBm.
- 6. Execute **PCCPCHPWR -12.0** to set [P-CCPCH_Ec/Ior] to [-12.0] dB.
- 7. Execute SCHPWR -12.0 to set [SCH_Ec/Ior] to [-12.0] dB.
- 8. Execute **PICHPWR -15.0** to set [PICH_Ec/Ior] to [-15.0] dB.
- 9. Execute **DDPCHPWR -19.0** to set [DPCH_Ec/Ior] to [-19.0] dB.
- 10. Execute ILVL 20.0 to set [Input Level] to [+20.0] dBm.
- 11. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 12. Execute ALLMEASITEMS OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1
- 13. Execute **BER_SAMPLE 10000** to set [Number of Sample] at BER measurement to [10000] bits.
- 14. Execute **SWP** to perform BER measurement.
- 15. Execute **BER?** to read the BER measurement result.
- 16. Confirm the result is lower than 0.1%.



#### 1.6.5. 6.8 Spurious Emissions

- 1. Execute **RRCSTATE CELLFACH** to set [RRC State] to [CELL_FACH].
- 2. Turn on the UE and execute Registration.
- 3. When **CALLSA** is executed, UE becomes CELL_FACH.
- 4. Spurious Emissions can be measured by connecting an external Spectrum Analyzer.

## 1.6.6. 7.2 Demodulation in Static Propagation Condition

The following measurement example is for a User bit rate of 12.2 kbps. Measurement can be performed in the same way for 64, 144, and 384 kbps by changing measurement parameters.

- 1. Execute **TESTMODE MODE2** to set [Test Loop Mode] to [Mode 2].
- 2. Execute MAXRATE 12.2 to set [Prioritized Ribs DL Max. Rate] to [12.2 kbps].
- 3. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 4. Connect with Test Loop Mode2.
- 5. Execute **OLVL -60.7** to set [Output Level] to [-60.7] dBm.
- 6. Execute AWGNLVL ON to set [AWGN Level] to [On].
- 7. Execute **AWGNPWR -0.7** to set [AWGN Level] to [-0.7] dB.
- 8. Execute CPICHPWR -10.0 to set [CPICH_Ec/Ior] to [-10.0] dB.
- 9. Execute **PCCPCHPWR -12.0** to set [P-CCPCH_Ec/Ior] to [-12.0] dB.
- 10. Execute SCHPWR -12.0 to set [SCH_Ec/Ior] to [-12.0] dB.
- 11. Execute **PICHPWR -15.0** to set [PICH_Ec/Ior] to [-15.0] dB.
- 12. Execute **DDPCHPWR -16.5** to set [DPCH_Ec/Ior] to [–16.5] dB.
- 13. Execute **ALLMEASITEMS OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,1,OFF,0N**, to set [BLER] measurement to [On].
- 14. Execute **BLER_SAMPLE 1000** to set [Number of Sample] at BLER measurement to [1000] Block.
- 15. Execute **SWP** to perform BLER measurement.
- 16. Execute **BLER?** to read the BLER measurement result.
- 17. Confirm the result is lower than 0.01.

Block Error Rate		
Block Error Rate	0.0000 (= 0.00 %)	
	0.00E+00	
Error Count	0	
Transmitted/Sample	1000 / 1000 Blo	sk 👘
Judgment	Pass	

## 1.7. Reduction of W-CDMA/GSM Measurement Time by Inter-RAT Handover

When W-CDMA and GSM TRX measurement is performed using a single platform, test times can be cut by executing Inter-RAT Handover from W-CDMA to GSM, and by eliminating GSM call processing. The Output Level must be set higher so handover will not fail.

- 1. Execute **STDSEL GSM** to change the system (Std Select) to GSM.
- 2. Execute **PRESET, BANDCAL**, etc., and initialize GSM etc. (Refer to 2.3.)
- 3. Execute **STDSEL WCDMA** and change the system (Std Select) to W-CDMA.
- 4. Execute **PRESET_3GPP, BANDCAL, INTEGRITY ON** etc., and initialize W-CDMA etc. (Refer to 1.3.1.)
- 5. Connect with Test Loop Mode and execute TRX measurement.
- 6. After the measurement, leave it connected in Test Loop Mode.
- 7. Execute **ISHO GSM** to handover to GSM.
- 8. Perform TRX measurement in GSM.

2004/08/12 18:05 <fundamental measurement=""> Outp</fundamental>	Loop Mode 1 ut Main	Ę	Phone-1 #-CDMA
Parameter Fundame	ental UE Report	2	
End	UE Power :	-10.1 dBm	Parameter
Power Measurement	(Meas, Count Avg. Max Min _9 nd _9 nd _9 nd	: 1/ 1) 🗖	Relative (AF)
Filtered Power	<u>124.9</u> <u>124.9</u> <u>124.9</u> <u>-9.24</u> <u>-9.24</u> <u>-9.24</u> 119.2 119.2 119.2	u₩ dBm u₩	
Frequency Error	(Meas, Count	: 1/ 1)	Handover To GSM
Carrier Frequency	1949.999999 MHz Avg. Max Min		
Carrier Frequency Error	-0.0010 -0.0010 -0.0010 0.00 0.00 0.00	kHz ppm	Select Scenario
<mark>Common Parameter</mark> Item List <mark>Sta</mark> Call Processing On Te	indand est Loop Mode <mark>Mode 1</mark>		Load Scenario
Frequency UL Channel & Frequency 9750 DL Channel & Frequency 10700	CH = 1950.000000 MHz CH = 2140.000000 MHz	Ŧ	Delete Scenario

## 1.8. UE Report

It is possible to have the UE send a Measurement Report to the tester. An example of how to obtain the CPICH RSCP Report value is shown below.

UE Report is sent every 500 ms.

Use the second UE Report, because the first UE Report after changing Downlink Level is the value measured before the change.



- 1. Execute call processing with Test Loop Mode1.
- 2. Execute **MEASREP ON** to set [Measurement Report] to [On] to command the UE to send Measurement Report.
- 3. Execute OLVL -108 to set [Output Level] to [-108] dBm.
- 4. Execute **CALLRFR** to initialize UE Report value.
- 5. Execute CPICH_RSCP? FLAG and wait until the response becomes 1 (first time).
- 6. Execute **CALLRFR** to initialize UE Report value.
- 7. Execute **CPICH_RSCP? FLAG** and wait until the response becomes 1 (second time).
- 8. Execute **CPICH_RSCP?** to read the CPICH RSCP value.
- 9. Return to 4 when reading the Report value again.

Measurement Result for Curren	t Cell		
Primary Scrambling Code	100		
CPTCH Fc/NO	24 (-12.5	to -12	dB)
CPICH RSCP	7 (-109	to -108	dBm )
Pathloss	46 dB		

# 1.9. Functional Test

## 1.9.1. Voice Call

For W-CDMA, AMR12.2 kbps Voice Call can be tested by using Call Processing function. An example of the Origination test is shown below.

- 1. Set [Call Processing] of Common Parameter to [On].
- 2. Set [Test Loop Mode] of Common Parameter to [Off].
- 3. Set [Channel Coding] of Common Parameter to [Voice].
- 4. When setting [Integrity Protection] of Call Processing Parameter to [On], confirm the [Authentication Key] with the SIM value.
- Call from the UE using any telephone number. The Call Processing state changes to Origination. The originated telephone number can be checked on the UE Report screen.
- 6. The Call Processing state changes to Communication. The equipment and UE can communicate with each other.
- 7. Set [DTCH Data Pattern] at Common Parameter to [Echo] and perform the voice communication test with echo-back.
- 8. Disconnect the equipment or UE. Press the [End Call] key when disconnecting from the equipment. The Call Processing state changes to UE Release or NW Release.

The result (Pass/Fail) is checked at the Sequence Monitor screen.



## 1.9.2. External Packet Data

For W-CDMA, DL 384 kbps and UL64 kbps packet connection can be tested by using the MX88205xC-002 W-CDMA External Packet Data option and Call Processing function. PPP and IP connections are supported.

The equipment supports communications between server and Client PCs by supporting the PPP or IP protocols over a wireless interface. Generally, PPP is used for dial-up connections and IP is used for web browsing and sending/receiving mail.



UE supporting PPP or IP connection Server PC Client PC Crossover cable for connection between the equipment and Server PC

- 1. Set 10Base-T [Default Gateway] to [0.0.0.0] at the System Config screen (The Gateway function is off).
- 2. Reload W-CDMA applications at the Standard Load screen.
- 3. Set [Call Processing] of Common Parameter to [On].
- 4. Set [Test Loop Mode] of Common Parameter to [Off].

- 5. Set [Channel Coding] of Common Parameter to [Packet].
- 6. When setting [Integrity Protection] of Call Processing Parameter to [On], confirm the [Authentication Key] at the SIM value.
- 7. Set [CPICH_Ec/Ior], [P-CCPCH_Ec/Ior], [SCH_Ec/Ior], [PICH_Ec/Ior] and [DPCH_Ec/Ior] of Physical Channel Parameter to [-6.0] dB.
- 8. Confirm the IP address of the Server PC using [Server IP Address] of the equipment Call Processing Parameter. Then check that the DHCP setting of the PC is turned off.
- 9. By using the Client PC dial-up connection, confirm the automatic IP address acquisition is turned on.
- 10. Set [Client IP Address] of Call Processing Parameter, which is allocated to Client PC at connection.
- 11. Set [DTCH Data Pattern] of Common Parameter to [External PPP Packet] (PPP connection) or [External IP Packet] (IP connection).
- 12. Turn on the UE power to perform Registration. Registration is performed twice (CS and PS) when [Registration Mode] is set in [Auto]
- 13. Set the Client PC user name and password to perform dial-up.
- 14. User name: PPP_CLIENT Password: MT8820A
- 15. The Call Processing state changes to Communication and the equipment and UE can communicate.
- 16. The connection status can be checked by executing a ping command from the Client PC to the Server PC.
- 17. The data transmission speed can be measured by installing a FTP server in the Server PC.
- 18. Disconnect from the Client PC.
- 19. The Call Processing state changes to UE Release.

#### 🖾 אליכים 🖓 אליקב

C:¥>ping 192.168.20.10

Pinging 192.168.20.10 with 32 bytes of data:

```
Reply from 192.168.20.10: bytes=32 time<10ms TTL=128
Reply from 192.168.20.10: bytes=32 time<10ms TTL=128
Reply from 192.168.20.10: bytes=32 time<10ms TTL=128
Ping statistics for 192.168.20.10:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:¥>______
```

- 0 ×

### 2. Connection using Gateway

Packet communications between different segments can be verified by connecting a Gateway between the equipment and Server PC.



<Items to prepare>

UE supporting PPP or IP connection Server PC Client PC Gateway

Straight-through cable for connection between Gateway and the equipment, or Gateway and Server PC

- 1. Set 10Base-T [Default Gateway] and [Subnet Mask] on System Config screen. At this time, the Default Gateway address is set to the same IP address as the router at the LAN side. (For example, when the IP address of the LAN side of the router is set to 192.168.20.1, the equipment Default Gateway address must be set to 192.168.20.1).
- 2. Reload WCDMA applications at the Standard Load screen.
- 3. Set [Call Processing] of Common Parameter to [On].
- 4. Set [Test Loop Mode] of Common Parameter to [Off].
- 5. Set [Channel Coding] of Common Parameter to [Packet].
- 6. When setting [Integrity] of Call Processing Parameter to [On], confirm the [Authentication Key] at the SIM value.
- 7. Set [CPICH_Ec/Ior], [P-CCPCH_Ec/Ior], [SCH_Ec/Ior], [PICH_Ec/Ior] and [DPCH_Ec/Ior] of Physical Channel Parameter to [-6.0] dB.
- 8. Set the IP address of the Server PC. The address must be in the same segment as the IP address of WAN side of router.
- 9. Set the IP address of the LAN side of the router to the Default Gateway of the Server PC.
- 10. By using the Client PC dial-up connection, confirm automatic IP address acquisition is turned on.
- 11. Set [Server IP Address] of Call Processing Parameter to the same IP address as the Default Gateway (procedure 1 above).
- 12. Set [Client IP Address] of Call Processing Parameter allocated to the Client PC when connecting. The address must be in the same segment as the Default Gateway (procedure 1 above).
- 13. Set [DTCH Data Pattern] of Common Parameter to [External PPP Packet] (PPP connection) or [External IP Packet] (IP connection).
- 14. Turn on the UE power and perform Registration. Registration is performed twice (CS and PS) when [Registration Mode] is set in [Auto].
- 15. Set the Client PC user name and password to perform dial-up.

- 16. User name: PPP_CLIENT Password: MT8820A
- 17. The Call Processing state changes to [Communication] and the equipment and UE can communicate.
- 18. The connection state can be checked by executing the ping command from the Client PC to the Server PC.
- 19. The data transmission speed can be measured by setting up an FTP server etc., on the Server PC.
- 20. Disconnect from the Client PC.
- 21. The Call Processing state changes to [UE Release].

## 1.9.3. Videophone

End-to-end 64-kbps W-CDMA videophone tests can be performed by connecting two units with the MX88205xC-003 W-CDMA Video Phone Test option installed.

In addition, this test can be performed using one equipment supporting Parallelphone measurement.

<Items to prepare>

Two equipment, or single equipment supporting Parallelphone measurement.

Two videophones

Crossover cable for connecting equipment and equipment



When using two MT8820B/C



When using single MT8820B/C supporting Parallelphone measurement

An example of how to perform the end-to-end videophone test is shown below.

- 1. Use a crossover cable to connect the 10Base-T port 1 of two equipment. When using a single equipment supporting Parallelphone measurement, connect 10Base-T port 1 and port 2 using a crossover cable.
- 2. Set [Call Processing] of Common Parameter to [On].
- 3. Set [Test Loop Mode] of Common Parameter to [Off].
- 4. Set [Channel Coding] of Common Parameter to [Audio & Visual].
- 5. Set [DTCH Data Pattern] of Common Parameter to [No Data].
- 6. When setting [Integrity] of Call Processing Parameter to [On], confirm the [Authentication Key] using the SIM value.
- 7. Press the [Start Call] key of the equipment connected to the UE (1) as shown above. (When using a single equipment supporting Parallelphone measurement, press the [Start Call] key of UE (1)).
- 8. Call from UE (2).
- 9. Answer the call as soon as UE (1) starts ringing.
- 10. The Call Processing state changes to Communication and the UEs can perform end-to-end communication.
- 11. Check the video and voice of the two videophones.
- 12. Press [End Call] of both equipment to disconnect. The Call Processing state changes to NW Release.

## 1.10. Calibration Measurement Function

Refer to the Application Note for UE Calibration about the Calibration Measurement Function.

## 1.11. HSDPA Measurement

### 1.11.1. Location Registration of Fixed Reference Channel

When connecting with HSDPA, Location registration must be performed using Fixed Reference Channel.

- 1. Execute **PRESET_3GPP** to preset parameters for 3GPP.
- 2. Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel].
- 3. Execute **INTEGRITY ON** to set [Integrity Protection] to [On].
- 4. Execute **REGMODE COMBINED** to set [Registration Mode] to [Combined].
- 5. Turn on the UE.
- 6. Execute CALLSTAT? and wait until the response becomes 2 (= Idle(Regist)).

### 1.11.2. Connection of Fixed Reference Channel

An example of how to connect Fixed Reference Channel after location registration is shown below. (See 1.11.1 Location Registration of Fixed Reference Channel.)

[Connection of H-Set1 QPSK]

- 1. Execute HSHSET HSET1_QPSK to set [H-Set] to [H-Set1(QPSK)].
- 2. Execute **CALLSA** to connect with Fixed Reference Channel.
- 3. Execute CALLSTAT? and wait until the response becomes 7 (= Test Loop Mode).

[Connection of H-Set1 16QAM]

- 1. Execute HSHSET HSET1_16QAM to set H-Set to [H-Set1(16QAM)].
- 2. Execute **CALLSA** to connect with Fixed Reference Channel.
- 3. Execute CALLSTAT? and wait until response becomes 7 (= Test Loop Mode).

### 1.11.3. Disconnection of Fixed Reference Channel

- 1. Execute **CALLSO** to disconnect from Fixed Reference Channel.
- 2. Execute CALLSTAT? and wait until the response becomes 2 (= Idle(Regist)).

### 1.11.4. Channel Change by Handover

Usually, measurement is performed at three frequency points (L, M, H). In this case, Channel can be quickly switched without reconnection by switching it at handover with a higher output level and  $\beta$ c for UL DPCCH. When a GPIB command is sent during handover, it waits until handover ends.

- 1. Perform TRX measurement with M channel.
- 2. Execute CHAN 9613 to handover to L channel.
- 3. Perform TRX measurement.
- 4. Execute CHAN 9887 to handover to H channel.
- 5. Perform TRX measurement.

## 1.11.5. Change of T $\beta$ c, $\beta$ d by Transport Channel Reconfiguration

When performing HSDPA measurement, gain parameters such as  $\beta c$ ,  $\beta d$ , must be changed according to the measurement conditions. In this case, measurement can be performed without reconnection by changing parameters during call processing at Transport Channel Reconfiguration. In addition, when a GPIB command sent during Transport Channel Reconfiguration, it waits until Transport Channel Reconfiguration ends.

- 1. Execute connection with Fixed Reference Channel.
- 2. Execute **ULGAINPAR 2,15,8,8,8** to set [βc] to [2], [βd] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8].
- 3. Perform TX measurement.
- 4. Execute **ULGAINPAR 11,15** to set [βc] to [11], [βd] to [15].
- 5. Perform TX measurement.
- 6. Execute **ULGAINPAR 15,8** to set [βc] to [15], [βd] to [8].
- 7. Perform TX measurement.
- 8. Execute **ULGAINPAR 15,4** to set [βc] to [15], [βd] to [4].
- 9. Perform TX measurement.

#### 1.11-1 Beta values for transmitter characteristics tests with HS-DPCCH (3GPP TS 34.121 Table C.10.1.4)

Sub-test	β _c	$\beta_d$	β _c /β _d	β _{HS}
1	2/15	15/15	2/15	4/15
2*	12/15	15/15	12/15	24/15
3	15/15	8/15	15/8	30/15
4	15/15	4/15	15/4	30/15

*The equipment supports 3GPP TS 34.121 Table C.10.1.4 Note4 and adopts  $\beta_c$  =11/15.

<u>"Note 4: For subtest 2 the  $P_{4}$  ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by</u> setting the signalled gain factors for the reference TFC (TF1, TF1) to  $P_{4}$  = 11/15 and  $P_{4}$  = 15/15."

#### 1.11.6. Selection of Measurement Items

The equipment is preset for W-CDMA measurement.

Since HSDPA Throughput measurement, CQI measurement items are preset to off, turn these items on to measure (**TPUT_MEAS ON, CQI_MEAS ON**).

Although other measurement items are preset to on, turn off unnecessary items, such as BER measurement and BLER measurement, to cut the measurement time (**BER_MEAS OFF**, **BLER_MEAS OFF**).

# 1.11.7. 5.2A Maximum Output Power with HS-DPCCH (Release 5 only)

## 5.2AA Maximum Output Power with HS-DPCCH (Release 6 and later)

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel].
- 3. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [3], [CQI Repetition Factor] to [2], and [TPC Algorithm] to [2].
- 4. Connect with Fixed Reference Channel H-Set1 (QPSK).
- 5. Execute ILVL 24.0 to set [Input Level] to [+24.0] dBm.
- 6. Execute OLVL -86.0 to set [Output Level] to [-86.0] dBm.
- 7. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 8. Execute **DTCHPAT PN9** to set [DTCH Data Pattern] to [PN9].
- 9. Execute PWR_MEAS ON to set [Power measurement] to [On].
- 10. Execute **PWR_AVG 20** to set [Average Count] of Power measurement to [20] times.

#### [Subtest1]

- 11. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 12. Execute SET_HSSUBTEST SUBTEST1 to set [Beta C] to [2], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 13. Execute **SWP** to perform Power measurement.
- 14. Execute **AVG_POWER?** to read the Power measurement result.
- 15. Confirm the measurement result is +24 dBm (Tolerance +1.7/-3.7 dB).

#### [Subtest2]

- 16. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 17. Execute SET_HSSUBTEST SUBTEST2 to set [Beta C] to [11], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 18. Execute **SWP** to perform Power measurement.
- 19. Execute AVG_POWER? to read the Power measurement result.
- 20. Confirm the measurement result is +24 dBm (Tolerance +1.7/-3.7 dB). .

#### [Subtest3]

- 21. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 22. Execute SET_HSSUBTEST SUBTEST3 to set [Beta C] to [15], [Beta D] to [8], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 23. Execute **SWP** to perform Power measurement.
- 24. Execute **AVG_POWER?** to read the Power measurement result.
- 25. Confirm the measurement result is the following value
   When specification is 5.2A : +23 dBm (Tolerance +2.7/-3.7 dB).
   When specification is 5.2AA : +23.5 dBm (Tolerance +2.2/-3.7 dB).

#### [Subtest4]

- 26. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 27. Execute SET_HSSUBTEST SUBTEST4 to set [Beta C] to [15], [Beta D] to [4] [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 28. Execute **SWP** to perform Power measurement.
- 29. Execute **AVG_POWER?** to read the Power measurement result.
- 30. Confirm the measurement result is the following value
  - When specification is 5.2A : +22 dBm (Tolerance +3.7/–3.7 dB).

When specification is 5.2A A: +23.5 dBm (Tolerance +2.2/–3.7 dB).

	(Mea	as. Count		20/	20)	
Avg.	Max	Min				
23.16	23.18	23.14	dBm			
207.0	207.9	206.1	m₩			
22.94	22.97	22.91	dBm			μ
197.0	198.3	195.6	m₩			
	Avg. 23.16 207.0 22.94 197.0	(Mea Avg. Max 23.16 23.18 207.0 207.9 22.94 22.97 197.0 198.3	(Meas. Count Avg. Max Min 23.16 23.18 23.14 207.0 207.9 206.1 22.94 22.97 22.91 197.0 198.3 195.6	Avg.         Max         Min           23.16         23.18         23.14         dBm           207.0         207.9         206.1         mW           22.94         22.97         22.91         dBm           197.0         198.3         195.6         mW	Avg.         Max         Min         20/           Avg.         Max         Min         4           23.16         23.18         23.14         dBm           207.0         207.9         206.1         mW           22.94         22.97         22.91         dBm           197.0         198.3         195.6         mW	Avg.       Max       Min         23.16       23.18       23.14       dBm         207.0       207.9       206.1       mW         22.94       22.97       22.91       dBm         197.0       198.3       195.6       mW

TX Power means Mean power (5 MHz bandwidth), Filtered Power means RRC filtered mean power.

## 1.11.8. 5.2C UE Relative Code Domain Power Accuracy (Release 6 and later)

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel].
- 3. Execute **SET_PWRPAT HSPC** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [1], [CQI Repetition Factor] to [1], and [TPC Algorithm] to [2].
- 4. Connect with Fixed Reference Channel H-Set1 (QPSK).
- 5. Execute DTCHPAT PN9 to set [DTCH Data Pattern] to [PN9].
- 6. Execute **OLVL -86.0** to set [Output Level] to [-86.0] dBm.
- 7. Execute SCRSEL TDMEAS to set [Screen] to [Time Domain Measurement ].
- 8. Execute **MEASOBJ HSDPCCH_MA** to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 9. Execute HSMA_ITEM CDP to set measurement result of HS-DPCCH (Modulation Analysis) to [CDP Ratio].
- 10. Execute **TDM_RRC OFF** to set [RRC Filter] to [Off].
- 11. Execute **HSSCCH OFF** to set [HS-SCCH power] to [Off].
- 12. Execute CQIFEEDBACK 0 to set [CQI Feedback Cycle] to [0 ms].
- 13. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 14. Execute **ILVL 0.0** to set [Input Level] to [0.0] dBm.
- 15. Wait 100 ms until the UE power becomes 0.0 dBm.
- 16. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 17. Execute HSSCCH ON to set [HS-SCCH power] to [On].
- 18. Execute CQIFEEDBACK 4 to set [CQI Feedback Cycle] to [4 ms].
- 19. Execute **ILVL 10.0** to set [Input Level] to [10.0] dBm.

[Subtest1]

- 20. Execute **SET_HSDELTA_CQI 7** to set [Delta CQI Setting] to [7].
- 21. Execute **SET_HSSUBTEST SUBTEST1** to set [Beta C] to [2], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [7].
- 22. Execute **SWP** to perform Power measurement.
- 23. Execute **CDPPASS?** to read the result. Confirm the result is PASS.

	HS-DPC	CH(Modulat	ion Analysi	s) (Internal	Trigger)	
Ref. Li	ne (	Man	ker Off			
11.0	dBm Judg	ment :				
(2dB/di	v)	<u>88</u>			E-TF0	)I:
				**************************************		
			· · · · · · · · · · · · · · · · · · ·			
		·	, , , , , , , , , , , , , , , , , , ,			· +
-1.0000	[ms]		6.0000			13.0000
UE relat	tive code	domain po	ower ratio	in dB:		
Point	DPCCH	DPDCH	HS-DPCCH	E-DPCCH	E-DPDCH1	E-DPDCH2
1	-17.62	-0.08	-53,20			
2	-17.93	-0.37	-11.93			
4	-17.69	-0.29	-13.51 -45.81			

[Subtest2]

- 24. Execute **SET_HSDELTA_CQI 7** to set [Delta CQI Setting] to [7].
- 25. Execute SET_HSSUBTEST SUBTEST2 to set [Beta C] to [11], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [7].
- 26. Execute **SWP** to perform Power measurement.
- 27. Execute **CDPPASS?** to read the result. Confirm the result is PASS.

ł	HS-DPCCH (N	<mark>lodulati</mark> (	<mark>on Analysi</mark>	s) (Internal	Trigger)	
Ref. Line :		Mark	er Off			
6.0 dBm	Judgment					
	Pass					
(2dB/div)					E-TFI	CI:
in the	m	I	m		(marine and a second	
+		;		<mark>  </mark>	4 X	
	استونتی معاد _ ل _ ا ا	na na mangangan ngangan nganga Ngangangan ngangangan ngangangan ngangangan ngangangan ngangangan ngangan ngangan ngangan ngangangan ngangan ng	·	hospininininininini		
		; !				
		L   	   	   	 	
-1.0000 [ms]		<b>i</b>	6.0000			13.0000
IT moletive	ando dos	oin pou	uon notio	in dD.		
		аштроу треч	NEL LACIO			E DDDCH2
POINC DPC	un – Dr -4, 13	-2 18	-37.28	E-DPCCH	E-DFDCHI	
2 -	-8.25	-6.25	-2,14			
3 -	-7.17	-5.18	-2.99			
4 -	-4.11	-2.15	-38,99			

[Subtest3]

- 28. Execute **SET_HSDELTA_CQI 7** to set [Delta CQI Setting] to [7].
- 29. Execute SET_HSSUBTEST SUBTEST3 to set [Beta C] to [15], [Beta D] to [8], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [7].
- 30. Execute **SWP** to perform Power measurement.
- 31. Execute **CDPPASS?** to read the result. Confirm the result is PASS.

	HS-DPC	CH(Modulat	ion Analy	sis) (I	[nternal	Thigger	)	
Ref. Li	ne :	Man	ken Off					
7.0 c	dBm Judg	ment :						
	Pa	SS						
(2dB/di	v)					E	-TFC	[:
	701A		· · ·	K-1-01				(mm)
<mark>-</mark> +	Wernamong-		h-manager	/		المرجعة محما		· - +
<mark>-</mark> +		 	· · · · · · · · · ·	· <mark>-</mark>	 			
<mark>-</mark> +								
			· · · · · · · ·					
<mark>-</mark> -			+ -					
		I						
-1.0000	[ms]		6.00	00				13.0000
UE relat	ive code	domain po	ower rat	io in	dB:			
Point	DPCCH	DPDCH	HS-DPCCH	1 E-	DPCCH	E-DPDCł	11	E-DPDCH2
1	-1.19	-6.61	-41.0	04				
2	-7.24	-12.58	-1.5	23				
3	-5.97	-11.37	-1.'	73				
4	-1.10	-6.56	-50.0	01				

[Subtest4]

- 32. Execute **SET_HSDELTA_CQI 7** to set [Delta CQI Setting] to [7].
- 33. Execute SET_HSSUBTEST SUBTEST4 to set [Beta C] to [15], [Beta D] to [4], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [7].
- 34. Execute **SWP** to perform Power measurement.
- 35. Execute **CDPPASS?** to read the result. Confirm the result is PASS.

HS-DP( Ref. Line : 7.0 dBm Judg <u>Pa</u> (2dB/div)	CCH(Modulat Mar ment: ass	<mark>ion Analysi</mark> ker Off	s) (Internal	Trigger) E-TF(	CI:
					12,0000
UE relative code	domain po	ower ratio	in dB:		10.0000
Point DPCCH	DPDCH	HS-DPCCH	E-DPCCH	E-DPDCH1	E-DPDCH2
2 -7.10	-18.19	-43.03			
3 -5.70	-16.80	-1.50			
4 -0.31	-11.77	-44.90			

Subtest in	Measure	Expected Relative Code Domain Power in dB				
table C.10.1.4	ment point	DPCCH	DPDCH	HS-DPCCH		
	1	-17.6	-0.08	OFF		
1	2	-17.9	-0.4	-11.8		
	3	-17.8	-0.3	-13.7		
	4	-17.6	-0.08	OFF		
	1	-4.1	-2.1	OFF		
2	2	-8.2	-6.2	-2.1		
2	3	-7.1	-5.2	-3		
	4	-4.1	-2.1	OFF		
	1	-1.1	-6.5	OFF		
2	2	-7.2	-12.7	-1.2		
3	3	-5.8	-11.3	-1.8		
	4	-1.1	-6.5	OFF		
	1	-0.3	-11.8	OFF		
4	2	-7.1	-18.5	-1		
4	3	-5.6	-17.1	-1.5		
	4	-0.3	-11.8	OFF		

#### 1.11-2 UE relative code domain power nominal ratios (3GPP TS 34.121 Table 5.2C.3)

## 1.11-3 UE relative code domain power accuracy test requirements (3GPP TS 34.121 Table 5.2C.4)

Nominal CDP Ratio	Accuracy (dB)
≥–10 dB	±1.7
-10 dB to ≥-15 dB	±2.3
-15 dB to ≥-20 dB	±2.9

## 1.11.9. 5.7A HS-DPCCH Power Control

- 1. Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel].
- 3. Execute **SET_PWRPAT HSPC** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [1], [CQI Repetition Factor] to [1], and [TPC Algorithm] to [2].
- 4. Execute **SET_HSDELTA_CQI 7** to set [Delta CQI Setting] to [7].
- 5. Execute SET_HSSUBTEST SUBTEST3 to set [Beta C] to [15], [Beta D] to [8], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [7]. (3GPP TS 34.121 Table C.10.1.4 Subtest 3)
- 6. Connect with Fixed Reference Channel H-Set1 (QPSK).
- 7. Execute **DTCHPAT PN9** to set [DTCH Data Pattern] to [PN9].
- 8. Execute **OLVL -86.0** to set [Output Level] to [-86.0] dBm.
- 9. Execute SCRSEL TDMEAS to set [Screen] to [Time Domain Measurement].
- 10. Execute MEASOBJ HSDPCCH_PC to set [Measurement Object] to [HS-DPCCH Power Control].
- 11. Execute **TDM_RRC OFF** to set [RRC Filter] to [Off].



#### 1.11-1 Transmit power template

#### $[TPC_cmd = 0]$

- 12. Execute HSSCCH OFF to set [HS-SCCH power] to [Off].
- 13. Execute CQIFEEDBACK 0 to set [CQI Feedback Cycle] to [0 ms].
- 14. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 15. Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 16. Wait 100 ms until the UE power becomes 0.0 dBm.
- 17. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 18. Execute **HSSCCH ON** to set [HS-SCCH power] to [On].
- 19. Execute CQIFEEDBACK 4 to set [CQI Feedback Cycle] to [4 ms].
- 20. Execute **ILVL 10.0** to set [Input Level] to [10.0] dBm.
- 21. Execute **OLVL -86.0** to set [Output Level] to [-86.0] dBm.
- 22. Execute HSPC_CMD 0 to set a template for HS-DPCCH Power Control to [TPC_cmd = 0].
- 23. Execute **SWP** to perform HS-DPCCH measurement.
- 24. Execute **HSPCPASS?** to read the HS-DPCCH measurement result. Confirm the result is PASS. When all Power Step results are within the Allowed Transmitter power step range [dB] in 3GPP TS.34.121 Table 5. 7A.2. it means PASS. If not, it means FAIL.


Sub-test in table C.10.1.4	Power step	Nominal Power step size, ∆P [dB]	Rounded Power step size, ∆P [dB]	Transmitter power step Tolerance [dB]	Allowed Transmitter power step range [dB]	
	1	6.14	6	+/- 2.3	3.7 to 8.44	
	2	-1.38	-1	+/- 0.6	-1.98 to -0.4	
	3	-4.76	-5	+/- 2.3	-7.3 to -2.46	
	4 ¹	0	0	+/- 0.6	-0.6 to 0.6	
	5	4.76	5	+/- 2.3	2.46 to 7.3	
3	6	1.38	1	+/- 0.6	0.4 to 1.98	
	7	-6.14	-6	+/- 2.3	-8.44 to -3.7	
	8 ¹	0	0	+/- 0.6	-0.6 to 0.6	
	9	4.76	5	+/- 2.3	2.46 to 7.3	
	10	-4.76	-5	+/- 2.3	-7.3 to -2.46	
	11 ¹	0	0	+/- 0.6	-0.6 to 0.6	
Note 1: Two test points						

1.11-4 3GPP TS34.121 Table 5.7A.2: Transmitter power test requirements for TPC_cmd=0

## 1.11-2 Transmit power template below max power with TPC_cmd = 0



#### $[TPC_cmd = 1]$

- 25. Execute **ILVL 35.0** to set [Input Level] to [+35.0] dBm.
- 26. Execute **TPCALGO 1** to set [TPC Algorithm] to [1].
- 27. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 28. Wait 100 ms until the UE power becomes maximum.
- 29. Execute **HSPC_CMD 1** to set the template for HS-DPCCH Power Control to [TPC_cmd = 1].
- 30. Execute **SWP** to perform HS-DPCCH measurement.
- Execute HSPCPASS? to read the HS-DPCCH measurement result. Confirm the result is PASS.
  When all Power Step results are within the Allowed Transmitter power step range [dB] in 3GPP TS.34.121
  Table 5. 7A.2. it means PASS. If not, it means FAIL.



1.11-5 3GPP TS34.121 Table 5.7A.3: Transmitte	r power test requirements f	or TPC_cmd=1
-----------------------------------------------	-----------------------------	--------------

Sub-test in table C.10.1.4	Power step	Nominal Power step size, ∆P [dB]	Rounded Power step size, ∆P [dB]	Transmitter power step Tolerance [dB]	Allowed Transmitter power step range [dB]
	1	6.14	6	+/- 2.3	3.7 to 8.44
	2	-1.38	-1	+/- 0.6	-1.98 to -0.4
	3 ³	No	No	NA	No requirements
		requirements	requirements		
	4	-4.76	-5	+/- 2.3	-7.3 to -2.46
	5 ¹	1	1	+/- 0.6	0.4 to 1.6
	6	4.76	5	+/- 2.3	2.46 to 7.3
3	7 ³	No	No	NA	No requirements
		requirements	requirements		
	8	1.38	1	+/- 0.6	0.40 to 1.98
	9	-6.14	-6	+/- 2.3	-8.44 to -3.7
	10 ²	1	1	+/- 0.6	0.4 to 1.6
	11	4.76	5	+/- 2.3	2.46 to 7.3
	12	-4.76	-5	+/- 2.3	-7.3 to -2.46
	13 ²	1	1	+/- 0.6	0.4 to 1.6

Note 1: Three test points

Note 2: Two test points

Note 3: In these test points rel-6 UE performs additional power scaling due to changes in allowed MPR, and therefore there are no requirements specified for transmitter power steps.

Note: Test points 3 and 7 were removed because the 3GPP ST34.121 (V8.3.0) 5.7A HS-DPCCH power control specification changed with V10.50.



1.11-3 Transmit power template belov	v max power with	TPC_cmd = 1
--------------------------------------	------------------	-------------

Subframe n	Subframe n+2	Subframe n+2	Subframe n+3	Subframe n+4	Subframe n+5

# 1.11.10. 5.9A Spectrum Emission Mask with HS-DPCCH

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel].
- 3. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [3], [CQI Repetition Factor] to [2], and [TPC Algorithm] to [2].
- 4. Connect with Fixed Reference Channel H-Set1 (QPSK).
- 5. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 6. Execute **OLVL -86.0** to set [Output Level] to [-86.0] dBm.
- 7. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 8. Execute **DTCHPAT PN9** to set [DTCH Data Pattern] to [PN9].
- 9. Execute **SMASK_MEAS ON** to set [Spectrum Emission Mask] measurement to [On].
- 10. Execute SMASK_AVG 20 to set [Average Count] of SEM measurement to [20] times.

#### [Subtest1]

- 11. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 12. Execute SET_HSSUBTEST SUBTEST1 to set [Beta C] to [2], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 13. Execute **SWP** to perform SEM measurement.
- 14. Execute **SMASKPASS**? to read the SEM measurement result. Confirm the measurement result is PASS.

#### [Subtest2]

- 15. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 16. Execute SET_HSSUBTEST SUBTEST2 to set [Beta C] to [11], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 17. Execute **SWP** to perform SEM measurement.
- 18. Execute **SMASKPASS**? to read the SEM measurement result. Confirm the measurement result is PASS.

#### [Subtest3]

- 19. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 20. Execute SET_HSSUBTEST SUBTEST3 to set [Beta C] to [15], [Beta D] to [8], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 21. Execute **SWP** to perform SEM measurement.
- 22. Execute **SMASKPASS?** to read the SEM measurement result. Confirm the measurement result is PASS.

#### [Subtest4]

- 23. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 24. Execute SET_HSSUBTEST SUBTEST4 to set [Beta C] to [15], [Beta D] to [4], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 25. Execute **SWP** to perform SEM measurement.
- 26. Execute **SMASKPASS**? to read the SEM measurement result. Confirm the measurement result is PASS.

Spectrum Emission Mask View		(Meas.	Count	20/	20)	
Template Judgment						
Judgment	Pass					

# 1.11.11. 5.10A Adjacent Channel Leakage Power Ratio (ACLR) with HS-DPCCH

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel].
- 3. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [3], [CQI Repetition Factor] to [2], and [TPC Algorithm] to [2].
- 4. Connect with Fixed Reference Channel H-Set1 (QPSK).
- 5. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 6. Execute **OLVL -86.0** to set [Output Level] to [-86.0] dBm.
- 7. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 8. Execute **DTCHPAT PN9** to set [DTCH Data Pattern] to [PN9].
- 9. Execute ADJ_MEAS ON to set [Adjacent Channel Power](ACLR) measurement to [On].
- 10. Execute ADJ_AVG 20 to set [Average Count] of ACLR measurement to [20] times.

#### [Subtest1]

- 11. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 12. Execute SET_HSSUBTEST SUBTEST1 to set [Beta C] to [2], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 13. Execute **SWP** to perform ACLR measurement.
- 14. Execute AVG_MODPWR? LOW10, AVG_MODPWR? LOW5, AVG_MODPWR? UP5, AVG_MODPWR? UP10 to read the ACLR measurement results.
- 15. Compare the measurement result with the table below.

#### [Subtest2]

- 16. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 17. Execute SET_HSSUBTEST SUBTEST1 to set [Beta C] to [11], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 18. Execute **SWP** to perform ACLR measurement.
- 19. Execute AVG_MODPWR? LOW10, AVG_MODPWR? LOW5, AVG_MODPWR? UP5, AVG_MODPWR? UP10 to read the ACLR measurement results.
- 20. Compare the measurement result with the table below.

#### [Subtest3]

- 21. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 22. Execute SET_HSSUBTEST SUBTEST1 to set [Beta C] to [15], [Beta D] to [8], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 23. Execute **SWP** to perform ACLR measurement.
- 24. Execute AVG_MODPWR? LOW10, AVG_MODPWR? LOW5, AVG_MODPWR? UP5, AVG_MODPWR? UP10 to read the ACLR measurement results.
- 25. Compare the measurement result with the table below.

[Subtest4]

- 26. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 27. Execute SET_HSSUBTEST SUBTEST1 to set [Beta C] to [15], [Beta D] to [4], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 28. Execute **SWP** to perform ACLR measurement.
- 29. Execute AVG_MODPWR? LOW10, AVG_MODPWR? LOW5, AVG_MODPWR? UP5, AVG_MODPWR? UP10 to read the ACLR measurement results.
- 30. Compare the measurement result with the table below.

Adjacent Channel Power		(Mea	as. Count	: 20/	20) 🗖
Offset Freq.	Power				
	Avg.	Max	Min		
-10 MHz	-46.20	-46.00	-46.40	зB	
-5 MHz	-37.31	-36.99	-37.68	зB	
5 MHz	-36.50	-36.21	-36.80 0	зB	
10 MHz	-48.25	-48.06	-48.38	зB	

#### 1.11-6 UE ACLR (3GPP TS 34.121 Table 5.10A.3)

Power Class	UE Channel	ACLR Limit
3	+5 MHz or –5 MHz	32.2 dB
3	+10 MHz or –10 MHz	42.2 dB

## 1.11.12. 5.13.1A Error Vector Magnitude (EVM) with HS-DPCCH

# 5.13.1AA Error Vector Magnitude (EVM) and Phase Discontinuity with HS-DPCCH

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel].
- 3. Execute **SET_PWRPAT HSPC** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [1], [CQI Repetition Factor] to [1], and [TPC Algorithm] to [2].
- 4. Execute **SET_HSDELTA_CQI 7** to set [Delta CQI Setting] to [7].
- 5. Execute SET_HSSUBTEST SUBTEST3 to set [Beta C] to [15], [Beta D] to [8], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [7].
- 6. Connect with Fixed Reference Channel H-Set1 (QPSK).
- 7. Execute **OLVL -86.0** to set [Output Level] to [-86.0] dBm.
- 8. Execute **DTCHPAT PN9** to set [DTCH Data Pattern] to [PN9].
- 9. Execute **SCRSEL TDMEAS** to set [Screen] to [Time Domain Measurement].
- 10. Execute **MEASOBJ HSDPCCH_MA** to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 11. Execute HSMA_ITEM EVMPHASE to set [Point List] to [EVM to Phase Disc.].
- 12. Execute **TDM_RRC OFF** to set [RRC Filter] to [Off].



- 13. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 14. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 15. Wait 300 ms until the UE becomes Max Power.
- 16. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 17. Execute **SWP** to perform Modulation Analysis measurement.
- 18. Execute **EVMPHASEPASS?** to read the result. Confirm the result is PASS.
  - When the Phase Discontinuity measurement result is within [±36deg] and the EVM measurement result is less than 17.5%, it means PASS. If not, it means FAIL.

HS	-DPCCH(Modulat	ion Analysis)(I	Internal Trigg	er)
Ref. Line :	Mar	rker Off		
18.0 dBm				
(2dB/div)				
[ ] [ ]	×	min	<u>_</u>	·
	; <mark></mark>			
<mark>-</mark>	, , , , , , , , , , , , , , , , , , ,	·		
		· · · · · · · · · · · · · · · · · · ·	▶	
+ <mark>+</mark> +		·		
-1.0000 [ms]	;;	6.0000		13.0000
			0.017	
EVII and phase	discontinui	ty with HS-DP(	CCH:	
Point EVI	1 [%] F	req.Err.[ppm]	Phase Disc	ontinuity [deg]
1	5.58	<u> </u>	02	
2	6.11	0.	03	-4.03
3	4.19	0.	00	
4	4.67	-0.	υı	-1,30

- 19. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 20. Execute HSSCCH OFF to set [HS-SCCH power] to [Off].
- 21. Execute **CQIFEEDBACK 0** to set [CQI Feedback Cycle] to [0 ms].
- 22. Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 23. Wait 200 ms until the UE power becomes [-18.0] dBm.
- 24. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 25. Execute HSSCCH ON to set [HS-SCCH power] to [On].
- 26. Execute CQIFEEDBACK 4 to set [CQI Feedback Cycle] to [4 ms].
- 27. Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 28. Execute **SWP** to perform Modulation Analysis measurement.
- Execute EVMPHASEPASS? to read the result. Confirm the result is PASS.
  When the Phase Discontinuity measurement result is within [±36deg] and the EVM measurement result is

less than 17.5%, it means PASS. If not, it means FAIL.

	HS-DPCCH	l(Modulat	ion Anal	<mark>lysis</mark> ) (1	Inter	<mark>nal Trigg</mark> e	r)	
Ref. L -11.0	.ine : dBm	Mar	ker Off					
(2dB/c	liv)							
					1			
	hanne		<u>.</u>	$\sqrt{2}$		m	<u> </u>	
		!			, , ,			
					   		-	
	 	 -	 	 	 			
	+	· -¦	, , ,	r	 '	¦	+ 	
-1.0000	[ms]	1	6.0	0000		1	1	3.0000
FUM and	f phace dica	ontinuit	w with	HC-DD	ссн-			
Point	FVM [%]	F	rea.Err	. [nom]	P	hase Disco	ntinuitv	[dev]
1		5.28	Content	0.	01			[008]
2		4.00		0.	01			-0.28
3		5.51		0.	00			
4	ļ	5.53		0.	00			-0.77

# 1.11.13. 5.13.2A Relative Code Domain Error with HS-DPCCH

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel].
- 3. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [3], [CQI Repetition Factor] to [2], and [TPC Algorithm] to [2].
- 4. Connect with Fixed Reference Channel H-Set1 (QPSK).
- 5. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 6. Execute OLVL -86.0 to set [Output Level] to [-86.0] dBm.
- 7. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 8. Execute DTCHPAT PN9 to set [DTCH Data Pattern] to [PN9].
- 9. Execute **RCDE_MEAS ON** to set [RCDE] measurement to [On].
- 10. Execute **RCDE_AVG 20** to set [Average Count] of RCDE measurement to [20] times.
- When input level set to max power

#### [Subtest1]

- 11. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 12. Execute SET_HSSUBTEST SUBTEST1 to set [Beta C] to [2], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 13. Execute **SWP** to perform RCDE measurement.
- 14. Execute **AVG_DPCCHECDP?** to read the ECDP DPCCH measurement result.
- 15. Execute **AVG_DPDCHECDP?** to read the ECDP DPDCH measurement result.
- 16. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 17. Execute AVG_DPCCHRCDE? to read the Relative Code Domain Error DPCCH measurement result.
- 18. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 19. Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 20. Confirm the Relative Code Domain Error is Relative Code Domain Error ≤ -15.5 dB, when -21 dB < ECDP and Relative Code Domain Error ≤ -36.5 – ECDP, when -30 dB ≤ ECDP ≤ -21dB.

#### [Subtest3]

- 21. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 22. Execute SET_HSSUBTEST SUBTEST3 to set [Beta C] to [15], [Beta D] to [8], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 23. Execute **SWP** to perform RCDE measurement.
- 24. Execute AVG_DPCCHECDP? to read the ECDP DPCCH measurement result.
- 25. Execute **AVG_DPDCHECDP?** to read the ECDP DPDCH measurement result.
- 26. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 27. Execute **AVG_DPCCHRCDE?** to read the Relative Code Domain Error DPCCH measurement result.
- 28. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 29. Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 30. Confirm the Relative Code Domain Error is

Relative Code Domain Error ≤ –15.5dB, when –21dB < ECDP and

Relative Code Domain Error  $\leq$  -36.5 – ECDP, when -30 dB  $\leq$  ECDP  $\leq$  -21dB.

[Subtest4]

- 31. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 32. Execute SET_HSSUBTEST SUBTEST4 to set [Beta C] to [15], [Beta D] to [4], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 33. Execute **SWP** to perform RCDE measurement.
- 34. Execute AVG_DPCCHECDP? to read the ECDP DPCCH measurement result.
- 35. Execute AVG_DPDCHECDP? to read the ECDP DPDCH measurement result.
- 36. Execute AVG_HSDPCCHECDP? to read the ECDP HS-DPCCH measurement result.
- 37. Execute **AVG_DPCCHRCDE**? to read the Relative Code Domain Error DPCCH measurement result.
- 38. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 39. Execute **AVG_HSDPCCHRCDE**? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 40. Confirm the Relative Code Domain Error is Relative Code Domain Error  $\leq -15.5$  dB, when -21 dB < ECDP and Relative Code Domain Error  $\leq -36.5 -$  ECDP, when -30 dB  $\leq$  ECDP  $\leq -21$ dB.
- When input level set to –18.0 dBm

[Sub-test1]

- 41. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 42. Execute SET_HSSUBTEST SUBTEST1 to set [Beta C] to [2], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 43. Execute **HSSCCH OFF** to set [HS-SCCH power] to [Off].
- 44. Execute CQIFEEDBACK 0 to set [CQI Feedback Cycle] to [0 ms].
- 45. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 46. Execute ILVL -18.0 to set [Input Level] to [–18.0] dBm.
- 47. Wait 200 ms until the UE power becomes [-18.0] dBm.
- 48. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 49. Execute **HSSCCH ON** to set [HS-SCCH power] to [On].
- 50. Execute CQIFEEDBACK 4 to set [CQI Feedback Cycle] to [4 ms].
- 51. Execute **ILVL -10.0** to set [Input Level] to [-10.0] dBm.
- 52. Execute **SWP** to perform RCDE measurement.
- 53. Execute **AVG_DPCCHECDP?** to read the ECDP DPCCH measurement result.
- 54. Execute AVG_DPDCHECDP? to read the ECDP DPDCH measurement result.
- 55. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 56. Execute **AVG_DPCCHRCDE**? to read the Relative Code Domain Error DPCCH measurement result.
- 57. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 58. Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 59. Confirm the Relative Code Domain Error is Relative Code Domain Error  $\leq -15.5$  dB, when -21 dB  $\leq$  ECDP and Relative Code Domain Error  $\leq -36.5 -$  ECDP, when -30 dB  $\leq$  ECDP  $\leq -21$ dB.

[Sub-test3]

- 60. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 61. Execute SET_HSSUBTEST SUBTEST3 to set [Beta C] to [15], [Beta D] to [8], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 62. Execute HSSCCH OFF to set [HS-SCCH power] to [Off].
- 63. Execute CQIFEEDBACK 0 to set [CQI Feedback Cycle] to [0 ms].
- 64. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 65. Execute **ILVL -18.0** to set [Input Level] to [–18.0] dBm.
- 66. Wait 200 ms until the UE power becomes [–18.0] dBm.
- 67. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 68. Execute HSSCCH ON to set [HS-SCCH power] to [On].
- 69. Execute CQIFEEDBACK 4 to set [CQI Feedback Cycle] to [4 ms].
- 70. Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 71. Execute **SWP** to perform RCDE measurement.
- 72. Execute **AVG_DPCCHECDP?** to read the ECDP DPCCH measurement result.
- 73. Execute **AVG_DPDCHECDP?** to read the ECDP DPDCH measurement result.
- 74. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 75. Execute **AVG_DPCCHRCDE?** to read the Relative Code Domain Error DPCCH measurement result.
- 76. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 77. Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 78. Confirm the Relative Code Domain Error is
  - Relative Code Domain Error ≤ –15.5 dB, when –21 dB < ECDP and

Relative Code Domain Error  $\leq$  -36.5 – ECDP, when -30 dB  $\leq$  ECDP  $\leq$  -21dB.

[Sub-test4]

- 79. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 80. Execute SET_HSSUBTEST SUBTEST4 to set [Beta C] to [15], [Beta D] to [4], [Delta ACK] to [8], [Delta NACK] to [8], and [Delta CQI] to [8].
- 81. Execute HSSCCH OFF to set [HS-SCCH power] to [Off].
- 82. Execute CQIFEEDBACK 0 to set [CQI Feedback Cycle] to [0 ms].
- 83. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 84. Execute ILVL -18.0 to set [Input Level] to [–18.0] dBm.
- 85. Wait 200 ms until the UE power becomes [–18.0] dBm.
- 86. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 87. Execute HSSCCH ON to set [HS-SCCH power] to [On].
- 88. Execute CQIFEEDBACK 4 to set [CQI Feedback Cycle] to [4 ms].
- 89. Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 90. Execute **SWP** to perform RCDE measurement.
- 91. Execute AVG_DPCCHECDP? to read the ECDP DPCCH measurement result.
- 92. Execute **AVG_DPDCHECDP?** to read the ECDP DPDCH measurement result.
- 93. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 94. Execute **AVG_DPCCHRCDE?** to read the Relative Code Domain Error DPCCH measurement result.
- 95. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 96. Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 97. Confirm the Relative Code Domain Error is
  - Relative Code Domain Error ≤ –15.5 dB, when –21 dB < ECDP and

Relative Code Domain Error  $\leq$  -36.5 – ECDP, when -30 dB  $\leq$  ECDP  $\leq$  -21dB.

Relative Code Domain Error				(Meas. )	Count :	20/	20)
	Relative	Code Doma	ain Error	CDP	ECDP		
	Avg.	Max	Min	Avg.	Avg.		
DPCCH	-39.34	-35.06	-43.25	-17.82	-17.82	dB	
DPDCH	-48.49	-46.46	-50.69	-0.38	-6.40	dB	
HS-DPCCH	-38.54	-34.85	-44.44	-11.84	-11.84	dB	
E-DPCCH						dB	
E-DPDCH1						dB	
E-DPDCH2						dB	

#### 1.11-7 3GPP TS34.121 Table 5.13.2A.5: Relative Code Domain Error test requirement

ECDP dB	Relative Code Domain Error dB
-21 < ECDP	≤ -15.5
-30 ≤ ECDP ≤ -21	≤ -36.5 - ECDP
ECDP < -30	No requirement

# 1.11.14. 6.3A Maximum Input Level for HS-PDSCH Reception (16QAM)

- 1. Execute ULGAINPAR 8,15,8,8,8 to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8].
- 2. Execute **TPCALGO 2** to set [Power Control Algorithm] to [Algorithm 2].
- 3. Execute CHAN 9750 to set to M channel. (in case of Band I)
- 4. Connect with Fixed Reference Channel H-Set1(16QAM).
- 5. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 6. Execute **ILVL 20.0** to set [Input Level] to [+20.0] dBm.
- 7. Wait 100 ms until UE power becomes [+20.0] dBm.
- 8. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 9. Execute OLVL -25.7 to set [Output Level] to [-25.7] dBm.
- 10. Execute **DDPCHPWR -13.0** to set [DPCH_Ec/Ior] to [-13.0] dB.
- 11. Execute **HSSCCHPWR -13.0** to set [HS-SCCH_Ec/Ior] to [–13.0] dB.
- 12. Execute **HSPDSCHPWR -3.0** to set [HS-PDSCH_Ec/Ior] to [-3.0] dB.
- 13. Execute TPUT_MEAS On to set [HSDPA Throughput] measurement to [On].
- 14. Execute **TPUT_SAMPLE 1000** to set [Number of Sample] of HSDPA Throughput to [1000] Block.
- 15. Execute **SWP** to perform HSDPA Throughput measurement.
- 16. Execute **TPUTPASS?** to read the HSDPA Throughput measurement result.

HSDPA Throughput	
Throughput	719 kbps
Block Error Rate	0.1020 (= 10.20 %)
	1.02E-01
Error Count	102
	(NACK 102 DTX 0)
Transmitted/Sample	1000 / 1000 Block
Judgment	Pass

# 1.12. HSUPA Measurement

## 1.12.1. E-DCH RF Test Location Registration

Location registration with E-DCH RF Test is required when connecting using HSUPA.

- 1. Execute **PRESET_3GPP** to preset parameter for 3GPP.
- 2. Execute CHCODING EDCHTEST to set [Channel Coding] to [E-DCH RF Test].
- 3. Execute HSUSET TTI10_QPSK to set [HSUPA Set of Parameters] to [TTI 10ms(QPSK)].
- 4. Execute **INTEGRITY On** to set [Integrity Protection] to [On].
- 5. Turn on the UE.
- 6. Execute CALLSTAT? and wait until the response becomes 2 (= Idle(Regist)).

## 1.12.2. E-DCH RF Test Connection

The process for performing E-DCH RF Test connection after location registration is shown below. (See 1.12.1 E-DCH RF Test Location Registration.)

- 1. Execute CALLSA to connect with E-DCH RF Test.
- 2. Execute CALLSTAT? and wait until the response becomes 7 (= Test Loop Mode).

## 1.12.3. E-DCH RF Test Disconnection

- 1. Execute CALLSO to disconnect from E-DCH RF Test.
- 2. Execute CALLSTAT? and wait until the response becomes 2 (= Idle(Regist)).

## 1.12.4. Channel Change at Handover

Usually, measurement is performed at three frequency points (L, M, H). In this case, the Channel can be switched quickly without reconnection by switching it at handover with a higher output level. When a GPIB command is sent during handover, it waits until handover ends.

- 1. Execute TRX measurement with M channel.
- 2. Execute CHAN 9613 to handover to L channel.
- 3. Execute TRX measurement.
- 4. Execute CHAN 9887 to handover to H channel.
- 5. Execute TRX measurement.

# 1.12.5. Change of $\beta c$ and $\beta d$ by Transport Channel Reconfiguration

When performing HSUPA measurement, gain parameters such as  $\beta c$ ,  $\beta d$  must be changed according to the measurement conditions. In this case, measurement can be performed without reconnection by changing parameters during call processing at Transport Channel Reconfiguration. In addition, when a GPIB command is sent during Transport Channel Reconfiguration, it waits until Transport Channel Reconfiguration ends.

- 1. Connect with E-DCH RF Test.
- 2. Execute **ALLREFETFCI 5,11,4,67,18,71,23,75,26,81,27** to set [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27].
- 3. Execute **ULGAINPAR 12,15,8,8,8,6** to set [βc] to 12, [βd] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [6].
- 4. Perform Tx measurement.
- 5. Execute ALLREFETFCI 2,11,4,92,18 to set [Number of E-TFCIs] to [2], [Reference E-TFCI] to [11,92], [Reference E-TFCI PO] to [4,18].
- 6. Execute **ULGAINPAR 6,15,8,8,8,8** to set [βc] to [6], [βd] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 7. Perform Tx measurement.

## 1.12.6. Measurement Item Selection

The MT8820/15B is preset for W-CDMA measurement.

Since HSUPA Throughput measurement items are preset to off, turn on these items to measure (**TPUTU_MEAS ON**) Although other measurement items are preset to on, turn off unnecessary items, such as BER measurement and BLER measurement, to cut the measurement time (**BER_MEAS OFF**, **BLER_MEAS OFF**).

# 1.12.7. 5.2B Maximum Output Power with HS-DPCCH and E-DCH

- 1. Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. Execute CHCODING EDCHTEST to set [Channel Coding] to [E-DCH RF Test].
- 4. Execute HSUSET TTI10_QPSK to set [HSUPA Set of Parameters] to [TTI 10ms(QPSK)].
- 5. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [3], [CQI Repetition Factor] to [2], and [TPC Algorithm] to [2].
- 6. Connect with Fixed Reference Channel H-Set1 (QPSK).
- 7. Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 8. Execute PWR_MEAS ON to set [Power measurement] to [On].
- 9. Execute PWR_AVG 20 to set [Average Count] of Power measurement to [20] times.
- 10. Execute TPUTU_MEAS ON to set [HSUPA Throughput] measurement to [On].
- 11. Execute **TPUTU_SAMPLE 15** to set [HSUPA Throughput Number of Sample] to [15].
- 12. Execute **EHICHPAT ACK** to set [E-HICH Pattern] to [ACK].

#### [Subtest1]

- 13. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 14. Execute SET_HSSUBTEST SUBTEST1 to set [Absolute Grant Value] to [20], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [10], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [6].
- 15. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 16. Execute ILVL 16.0 to set [Input Level] to [+16.0] dBm.
- 17. Wait 150 ms until the UE power becomes 16.0 dBm.
- 18. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 19. Execute ILVL 26.0 to set [Input Level] to [+26.0] dBm.
- 20. Execute **SWP** to perform HSUPA Throughput measurement and confirm the E-TFCI measurement result is <u>75</u>.
- 21. Execute **TPC_CMD_UP** to raise [TxPower] only 1 dB and wait 150 ms.
- 22. Execute **SWP** to perform HSUPA Throughput measurement.

HSUPA Throughput				
	Avg.	Median	Max	Min
E-TFCI	75.0	75	75	75
Throughput	242.1	kbps		
Received/Sample	1000	/ 10	00 Block	

- 23. Execute AVG_ETFCI? to read the E-TFCI measurement result, and confirm it is <u>75</u>.
- 24. Repeat procedures 21 to 23 until the E-TFCI measurement result is not <u>75</u>. Execute measurement by reducing [Input Level] only 1 dB, and confirm the E-TFCI measurement result is <u>75</u> again.
- 25. Execute **TPC_CMD_DOWN** to reduce [TxPower] only 1 dB and wait 150 ms.
- Execute SWP to perform HSUPA Throughput measurement, and confirm the E-TFCI measurement result is <u>75</u>. (Repeat procedures 25 and 26 if the E-TFCI measurement result is not <u>75</u>.)
- 27. Execute **AVG_POWER?** to read the Power measurement result.
- 28. Confirm the measurement result is +24 dBm (Tolerance +1.7/–6.7 dB).

	(Mea	as. Count		20/	20)	
Avg.	Max	Min				
23.16	23.18	23.14	dBm			
207.0	207.9	206.1	m₩			
22.94	22.97	22.91	dBm			H-
197.0	198.3	195.6	m₩			
	Avg. 23.16 207.0 22.94 197.0	(Mea Avg. Max 23.16 23.18 207.0 207.9 22.94 22.97 197.0 198.3	(Meas. Count Avg. Max Min 23.16 23.18 23.14 207.0 207.9 206.1 22.94 22.97 22.91 197.0 198.3 195.6	Avg.      Max      Min        23.16      23.18      23.14      dBm        207.0      207.9      206.1      mW        22.94      22.97      22.91      dBm        197.0      198.3      195.6      mW	Avg.      Max      Min      20/        Avg.      Max      Min      4        23.16      23.18      23.14      dBm        207.0      207.9      206.1      mW        22.94      22.97      22.91      dBm        197.0      198.3      195.6      mW	Avg.      Max      Min      20/      20)        Avg.      Max      Min      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4      4

TX Power means Mean power (5 MHz band), and Filtered Power means RRC filtered mean power.

[Subtest2]

- 29. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- Execute SET_HSSUBTEST SUBTEST2 to set [Absolute Grant Value] to [12], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [6], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 31. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 32. Execute ILVL 14.0 to set [Input Level] to [+14.0] dBm.
- 33. Wait 150 ms until the UE power becomes 14.0 dBm.
- 34. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 35. Execute ILVL 26.0 to set [Input Level] to [+26.0] dBm.
- 36. Execute **SWP** to perform HSUPA Throughput measurement, and confirm the E-TFCI measurement result is <u>67</u>.
- 37. Execute TPC_CMD_UP to raise [TxPower] only 1 dB and wait 150 ms.
- 38. Execute SWP to perform HSUPA Throughput measurement.
- 39. Execute AVG_ETFCI? to read E-TFCI measurement result, and confirm it is <u>67</u>.
- 40. Repeat procedures 37 to 39 until the E-TFCI measurement result is not <u>67</u>.
- 41. Execute **TPC_CMD_DOWN** to reduce [TxPower] only 1 dB and wait 150 ms.
- 42. Execute **SWP** to perform HSUPA Throughput measurement, and confirm the E-TFCI measurement result is <u>67</u>.
  - (Repeat procedures 41 and 42 if the E-TFCI measurement result is not <u>67</u>.)
- 43. Execute **AVG_POWER?** to read the Power measurement result.
- 44. Confirm the measurement result is +22 dBm (Tolerance +3.7/–5.2 dB).

#### [Subtest3]

- 45. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- Execute SET_HSSUBTEST SUBTEST3 to set [Absolute Grant Value] to [15], [Number of E-TFCIs] to [2], [Reference E-TFCI] to [11,92], [Reference E-TFCI PO] to [4,18], [Beta C] to [15], [Beta D] to [9], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 47. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 48. Execute **ILVL 15.0** to set [Input Level] to [+15.0] dBm.
- 49. Wait 100 ms until the UE power becomes 15.0 dBm.
- 50. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 51. Execute ILVL 26.0 to set [Input Level] to [+26.0] dBm.
- 52. Execute **SWP** to perform HSUPA Throughput measurement, and confirm the E-TFCI measurement result is <u>92</u>.
- 53. Execute **TPC_CMD_UP** to raise [TxPower] only 1 dB and wait 150 ms.
- 54. Execute **SWP** to perform HSUPA Throughput measurement.
- 55. Execute **AVG_ETFCI**? to read the E-TFCI measurement result, and confirm it is <u>92</u>.
- 56. Repeat procedures 53 to 55 until the E-TFCI measurement result is not <u>92</u>.
- 57. Execute **TPC_CMD_DOWN** to reduce [TxPower] only 1 dB and wait 150 ms.
- 58. Execute **SWP** to perform HSUPA Throughput measurement, and confirm the E-TFCI measurement result is <u>92</u>.
  - (Repeat procedures 57 and 58 if the E-TFCI measurement result is not <u>92</u>.)
- 59. Execute **AVG_POWER?** to read the Power measurement result.
- 60. Confirm the measurement result is +23 dBm (Tolerance +2.7/–5.2 dB).

[Subtest4]

- 61. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 62. Execute **SET_HSSUBTEST SUBTEST4** to set [Absolute Grant Value] to [17], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [2], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [5].
- 63. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 64. Execute ILVL 14.0 to set [Input Level] to [+14.0] dBm.
- 65. Wait 100 ms until the UE power becomes 14.0 dBm.
- 66. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 67. Execute ILVL 26.0 to set [Input Level] to [+26.0] dBm.
- 68. Execute **SWP** to perform HSUPA Throughput measurement, and confirm the E-TFCI measurement result is <u>71</u>.
- 69. Execute TPC_CMD_UP to raise [TxPower] only 1 dB and wait 150 ms.
- 70. Execute SWP to perform HSUPA Throughput measurement.
- 71. Execute **AVG_ETFCI**? to read the E-TFCI measurement result, and confirm it is <u>71</u>.
- 72. Repeat procedures 69 to 71 until the E-TFCI measurement result is not <u>71</u>.
- 73. Execute **TPC_CMD_DOWN** to reduce [TxPower] only 1 dB and wait 150 ms.
- 74. Execute **SWP** to perform HSUPA Throughput measurement, and confirm the E-TFCI measurement result is <u>71</u>.
  - (Repeat procedures 73 and 74 if the E-TFCI measurement result is not <u>71</u>.)
- 75. Execute **AVG_POWER?** to read Power measurement result.
- 76. Confirm the measurement result is +22 dBm (Tolerance +3.7/-5.2 dB).

[Subtest5 -before v8.7.0]

- 77. Execute SUBTEST5_VER OLD to set [Sub-test5 Version] to [Old].
- 78. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 79. Execute SET_HSSUBTEST SUBTEST5 to set [Absolute Grant Value] to [21], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [14], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [7].
- 80. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 81. Execute ILVL 16.0 to set [Input Level] to [+16.0] dBm.
- 82. Wait 100 ms until the UE power becomes 16.0 dBm.
- 83. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 84. Execute ILVL 26.0 to set [Input Level] to [+26.0] dBm.
- 85. Execute **SWP** to perform HSUPA Throughput measurement, and confirm the E-TFCI measurement result is <u>81</u>.
- 86. Execute **TPC_CMD_UP** to raise [TxPower] only 1 dB and wait 150 ms.
- 87. Execute **SWP** to perform HSUPA Throughput measurement.
- 88. Execute **AVG_ETFCI**? to read the E-TFCI measurement result, and confirm it is <u>81</u>.
- 89. Repeat procedures 86 to 88 until the E-TFCI measurement result is not <u>81</u>.
- 90. Execute **TPC_CMD_DOWN** to reduce [TxPower] only 1 dB and wait 150 ms.
- 91. Execute **SWP** to perform HSUPA Throughput measurement, and confirm the E-TFCI measurement result is <u>81</u>.
- 92. Repeat procedures 90 and 91 if the E-TFCI measurement result is not <u>81</u>.)
- 93. Execute AVG_POWER? to read the Power measurement result.
- 94. Confirm the measurement result is +24 dBm (Tolerance +1.7/–6.7 dB).

#### Supports Sub-test5 specification revised by change from V20.10 to 3GPP TS34.121 v8.8.0 The test procedure after 3GPP TS34.121 v8.8.0 is:

[Sub-test5 – after v8.8.0]

- 95. Execute TPUTU_MEAS OFF to set [HSUPA Throughput measurement] to [Off].
- 96. Execute **SUBTEST5_VER NEW** to set [Sub-test5 Version] to [New].
- 97. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 98. Execute **SET_HSSUBTEST SUBTEST5** to set [Absolute Grant Value] to [12], [Number of E-TFCIs] to [1], [Reference E-TFCI] to [67], [Reference E-TFCI PO] to [18], [Delta ACK] to [0], [Delta NACK] to [0], [Delta CQI] to 0, [Delta E-DPCCH] to [0], [minimum set of E-TFCI] to [67], [Power Control Algorithm] to [1].
- 99. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 100. Execute ILVL 16.0 to set [Input Level] to [+16.0] dBm.
- 101. Wait 150 ms until the UE power becomes 16.0 dBm.
- 102. Execute ILVL 26.0 to set [Input Level] to [+26.0] dBm.
- 103. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL1].
- 104. Wait 150 ms until the UE power becomes Max Power.
- 105. Execute **SWP** to perform Power measurement.
- 106. Execute **AVG_POWER?** to read the Power measurement result.
- 107. Confirm the measurement result is +24 dBm (Tolerance +1.7/-3.7 dB).

## 1.12.8. 5.2D UE Relative Code Domain Power Accuracy for HS-DPCCH and E-DCH

#### The following procedure is based on the 3GPP TS 34.121-1 V9.1.0 procedure.

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. Execute CHCODING EDCHTEST to set [Channel Coding] to [E-DCH RF Test].
- 4. Execute HSUSET TTI10_QPSK to set [HSUPA Set of Parameters] to [TTI 10ms(QPSK)].
- 5. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [3], [CQI Repetition Factor] to [2], and [TPC Algorithm] to [2].
- 6. Connect with E-DCH RF Test, TTI 10 ms.
- 7. Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 8. Execute **TPUTU_MEAS ON** to set [HSUPA Throughput] measurement to [On].
- 9. Execute **TPUTU_SAMPLE 15** to set [HSUPA Throughput Number of Sample] to [15].

#### [Subtest1]

- 10. Execute **SCRSEL FMEAS** to display the Fundamental Measurement screen.
- 11. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 12. Execute **SET_HSSUBTEST SUBTEST1** to set [Absolute Grant Value] to [20], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [10], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [6].
- 13. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 14. Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 15. Wait 150 ms until the UE power becomes 15.0 dBm.
- 16. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 17. Execute **SWP** to perform HSUPA Throughput measurement.
- 18. Execute **AVG_ETFCI**? to read the E-TFCI measurement result, and confirm it is <u>75</u>.
- 19. Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 20. Execute MEASOBJ HSDPCCH_MA to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 21. Execute HSMA_ITEM CDP to set measurement result of HS-DPCCH (Modulation Analysis) to [CDP Ratio].
- 22. Execute **SWP** to perform CDP Ratio measurement.
- Execute CDPPASS? to read the SEM measurement result. Confirm the measurement result is PASS. When the result is within the Accuracy [dB] in 3GPP TS.34.121 Table 5.2D.8, it means PASS. If not, it means FAIL.

Bof I	HS-DPI	CCH (Modullat Mar	<mark>ion Analysi</mark> kep Off	<mark>s) (Internal</mark>	Trigger)		
10.0	dBm Judg	ment:					
(2dB/c	liv)	155			E-TF(	CI: 75	
	+		L ,			· +	
the second	 	     	 			and the second	
		1					
-1.0000	-1.0000 [ms] 6.0000 13.0000						
UE rela	itive code	domain po	ower ratio	) in dB:			
Point	DPCCH	DPDCH	HS-DPCCH	E-DPCCH	E-DPDCH1	E-DPDCH2	
1	-9.34	-6,63	-3.32	-7.29	-18,95	-55.09	
2	-18,08	-15,90	-12.52	-16.00	-0.00	-34.18 -49.23	

#### [Subtest2]

- 24. Execute **SCRSEL FMEAS** to display the Fundamental Measurement screen.
- 25. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- Execute SET_HSSUBTEST SUBTEST2 to set [Absolute Grant Value] to [12], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [6], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 27. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 28. Execute **ILVL 15.0** to set [Input Level] to [+15.0] dBm.
- 29. Wait 150 ms until the UE power becomes 15.0 dBm.
- 30. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 31. Execute **SWP** to perform HSUPA Throughput measurement.
- 32. Execute **AVG_ETFCI**? to read the E-TFCI measurement result, and confirm it is <u>75</u>.
- 33. Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 34. Execute MEASOBJ HSDPCCH_MA to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 35. Execute HSMA_ITEM CDP to set measurement result of HS-DPCCH (Modulation Analysis) to [CDP Ratio].
- 36. Execute **SWP** to perform CDP Ratio measurement.
- 37. Execute **CDPPASS**? to read the SEM measurement result. Confirm the measurement result is PASS. When the result is within the Accuracy [dB] in 3GPP TS.34.121 Table 5.2D.8, it means PASS. If not, it means FAIL.

	HS-DP(	CCH(Modulat	ion Analys	is) (Internal	Trigger)	
Ref. Li	ine :	Man	ker Off 👘			
9.0	dBm Juda	ment :				
(2dB/d	iv)	325			E-TFC	CI: 67
*****	·					184401-40-400-400
			L L L			· +
		····	ст ! !			
-1.0000	[ms]		6.000	o İ	·	13,0000
UE rela	tive code	domain po	ower ratio	o in dB: 👘		
Point	DPCCH	DPDCH	HS-DPCCH	E-DPCCH	E-DPDCH1	E-DPDCH2
1	-11.91	-3.90	-5,85	5 -5.85	-21.39	-55.37
2	-14.08	-6.03	-8.00	) -7.95	-4.08	-34.11
3	-11.93	-3.91	-5.84	1 –5.84	-21.43	-58.49

#### [Subtest3]

- 38. Execute **SCRSEL FMEAS** to display the Fundamental Measurement screen.
- 39. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- Execute SET_HSSUBTEST SUBTEST3 to set [Absolute Grant Value] to [15], [Number of E-TFCIs] to [2], [Reference E-TFCI] to [11,92], [Reference E-TFCI PO] to [4,18], [Beta C] to [15], [Beta D] to [9], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 41. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 42. Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 43. Wait 150 ms until the UE power becomes 15.0 dBm.
- 44. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 45. Execute **SWP** to perform HSUPA Throughput measurement.
- 46. Execute **AVG_ETFCI**? to read the E-TFCI measurement result, and confirm it is <u>75</u>.
- 47. Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 48. Execute MEASOBJ HSDPCCH_MA to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 49. Execute HSMA_ITEM CDP to set measurement result of HS-DPCCH (Modulation Analysis) to [CDP Ratio].
- 50. Execute **SWP** to perform CDP Ratio measurement.
- 51. Execute CDPPASS? to read the SEM measurement result. Confirm the measurement result is PASS. When the result is within the Accuracy [dB] in 3GPP TS.34.121 Table 5.2D.8, it means PASS. If not, it means FAIL.

	HS-DP	CCH(Modulat	ion Analysi	s) (Internal	Trigger)	
Ref. L	ine :	Man	ker Off			
9.0	dBm Judg	zment :				
	Pa	ass				
(2dB/d	iv) 📕				E-TF0	I: 92
(/						
(Area	the second second	aparter and a second	and a state of the	where the second se	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	r		<u>+</u>			
			<b></b>			
and the second se	+					
	· · ·		LL.	· · · · · · · · · · · · · · · · · · ·		
	· · ·	;	· ·		<b>_</b>	!
-1.0000	[ms]		6.0000			13,0000
2.0000						
UE rela	tive code	: domain po	ower ratio	in dB:		
Point	DPCCH	DPDCH	HS-DPCCH	E-DPCCH	E-DPDCH1	E-DPDCH2
1	-9.77	-14.20	-3.75	-3.75	-19.29	-55.92
2	-14.62	-19.08	-8.63	-8.63	-4.70	-4.70
3	-9.79	-14.18	-3.76	-3.75	-19.39	-55.85

#### [Subtest4]

- 52. Execute **SCRSEL FMEAS** to display the Fundamental Measurement screen.
- 53. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 54. Execute **SET_HSSUBTEST SUBTEST4** to set [Absolute Grant Value] to [17], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [2], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [5].
- 55. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 56. Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 57. Wait 150 ms until the UE power becomes 15.0 dBm.
- 58. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 59. Execute **SWP** to perform HSUPA Throughput measurement.
- 60. Execute **AVG_ETFCI**? to read the E-TFCI measurement result, and confirm it is <u>75</u>.
- 61. Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 62. Execute MEASOBJ HSDPCCH_MA to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 63. Execute HSMA_ITEM CDP to set measurement result of HS-DPCCH (Modulation Analysis) to [CDP Ratio].
- 64. Execute **SWP** to perform CDP Ratio measurement.
- 65. Execute **CDPPASS?** to read the SEM measurement result. Confirm the measurement result is PASS. When the result is within the Accuracy [dB] in 3GPP TS.34.121 Table 5.2D.8, it means PASS. If not, it means
  - FAIL.

	HS-DPC	CH(Modulat	ion Analys	is) (Internal	Trigger)	
Ref. Li	ne (	Man	kerOff 👘			
9.0 c	dBm Judg	ment:				
	Pa	ISS				
(2dB/di	v) 👘				E-TFC	I: 71
			II			· · · · · · · · · · · · · · · · · · ·
- min	مىدەمەلىكى مىرمىيە		, <del>, , , , , , , , , , , , , , , , , , ,</del>	مر. معير مير _{الم} مر بيعد مر	l l Web-sport	
er mar			, , , , , , , , , , , , , , , , , , ,		have a second	Annonanananana
				<b>.</b>		
			I I II		I I II	
				·!		
			LL       	·	 	
	j I	·	ст , ,			
-1 0000	[me]		6 000	0	·	13,0000
1.0000	Fues 1		0.000			10,0000
UE relat	ive code	domain po	ower ratio	o in dB: 👘		
Point	DPCCH	DPDCH	HS-DPCCH	E-DPCCH	E-DPDCH1	E-DPDCH2
1	-17.96	-0.45	-11.9	7 –18.01	-27.31	-39.05
2	-19.71	-2.22	-13.66	6 –19.68	-4.76	-34.67
3	-17.91	-0.45	-11.96	6 –18.05	-27.19	-38.35

Subtest	Measure		Expected Relative Code Domain Power in dB						
in Table C.11.1.3	-ment Point	DPCCH	DPDCH	HS-DPCCH	E-DPCCH	E-DPDCH1	E-DPDCH2		
	1	-9.3	-6.6	-3.3	-7.3	-18.9	OFF		
1	2	-18.5	-15.8	-12.5	-16.5	-0.5	OFF		
	3	-9.3	-6.6	-3.3	-7.3	-18.9	OFF		
	1	-11.9	-3.9	-5.8	-5.8	-21.4	OFF		
2	2	-14.0	-6.0	-8.0	-8.0	-4.1	OFF		
	3	-11.9	-3.9	-5.8	-5.8	-21.4	OFF		
	1	-9.8	-14.2	-3.7	-3.7	-19.3	OFF		
3	2	-14.6	-19.1	-8.6	-8.6	-4.7	-4.7		
	3	-9.8	-14.2	-3.7	-3.7	-19.3	OFF		
	1	-17.9	-0.4	-11.9	-17.9	-27.5	OFF		
4	2	-19.7	-2.2	-13.7	-19.7	-4.7	OFF		
	3	-17.9	-0.4	-11.9	-17.9	-27.5	OFF		

## 1.12-1 3GPP TS34.121 Table 5.2D.7: UE relative code domain power nominal ratios

## 1.12-2 3GPP TS34.121 Table 5.2D.8: UE relative code domain power accuracy test requirements

Nominal CDP ratio	Accuracy (dB)
≥–10 dB	±1.7
-10 dB to ≥-15 dB	±2.3
-15 dB to ≥-20 dB	±2.9

## 1.12.9. 5.9B Spectrum Emission Mask with E-DCH

#### The following procedure is based on the 3GPP TS 34.121-1 V9.1.0 procedure.

The process is same as 1.12.7. 5.2B Maximum Output Power with HS-DPCCH and E-DCH. Execute **SMASK_MEAS ON** at process 10, **SMASK_AVG 20** at process 11, and execute **SMASKPASS?** at each Subtest process 27, 43, 59, 75, 93, and 106 to read the SEM measurement result.

Spectrum Emission Mask	View		(Meas.	Count	1	20/	20)	
Template Judgment		_						
Judgment		Pass						

## 1.12.10. 5.10B Adjacent Channel Leakage Power Ratio (ACLR) with E-DCH

#### The following procedure is based on the 3GPP TS 34.121-1 V9.1.0 procedure (for power class 3).

The process is same as 1.12.7. 5.2B Maximum Output Power with HS-DPCCH and E-DCH. Execute **ADJ_MEAS ON** at process 10, **ADJ_AVG 20** at process 11, and execute **AVG_MODPWR? LOW10**, **AVG_MODPWR? LOW5**, **AVG_MODPWR? UP5**, **AVG_MODPWR? UP10** at each Subtest procedure 27, 43, 59, 75, 93, and 106 to read the ACLR measurement result.

Adjacent Channel Power		(Mea	as. Count :	20/	20) 🔳
Leakage power due to Mod	dulation				
Offset Freq.	Power				
	Avg.	Max	Min		
-10 MHz	-46.20	-46.00	-46.40 c	IB	
-5 MHz	-37.31	-36.99	-37.68 c	IB	
5 MHz	-36.50	-36.21	–36.80 c	IB	
10 MHz	-48.25	-48.06	-48.38 c	IB	
5 MHz 10 MHz	-36.50 -48.25	-36.21 -48.06	-36.80 c -48.38 c	IB IB	

#### 1.12-3 UE ACLR (3GPP TS 34.121 Table 5.10B.2)

Power Class	UE channel	ACLR limit
3	+5 MHz or –5 MHz	32.2 dB
3	+10 MHz or –10 MHz	42.2 dB

# 1.12.11. 5.13.2B Relative Code Domain Error with HS-DPCCH and E-DCH

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. Execute CHCODING EDCHTEST to set [Channel Coding] to [E-DCH RF Test].
- 4. Execute HSUSET TTI10_QPSK to set [HSUPA Set of Parameters] to [TTI 10ms(QPSK)].
- 5. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4 ms], [Ack-Nack Repetition Factor] to [3], [CQI Repetition Factor] to [2], and [TPC Algorithm] to [2].
- 6. Connect with E-DCH RF Test, TTI 10ms.
- 7. Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 8. Execute **DTCHPAT PN9** to set [DTCH Data Pattern] to [PN9].
- 9. Execute **RCDE_MEAS ON** to set [RCDE measurement] to [On].
- 10. Execute **RCDE_AVG 20** to set [Average Count] of RCDE measurement to [20] times.
- 11. Execute **TPUTU_MEAS ON** to set [HSUPA Throughput measurement] to [On].
- 12. Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].

[Subtest1]

- 13. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 14. Execute **SET_HSSUBTEST SUBTEST1** to set [Absolute Grant Value] to [20], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [10], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [6].
- 15. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 16. Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 17. Wait 150 ms until the UE power becomes 15.0 dBm.
- 18. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 19. Execute SWP to perform HSUPA Throughput measurement and RCDE measurement .
- 20. Execute AVG_ETFCI? to read the E-TFCH measurement result and confirm it is 75.
- 21. Execute AVG_DPCCHECDP? to read the ECDP DPCCH measurement result.
- 22. Execute **AVG_DPDCHECDP?** to read the ECDP DPDCH measurement result.
- 23. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 24. Execute **AVG_EDPCCHECDP?** to read the ECDP E-DPCCH measurement result.
- 25. Execute **AVG_EDPDCH1ECDP?** to read the ECDP E-DPDCH1 measurement result.
- 26. Execute AVG_DPCCHRCDE? to read the Relative Code Domain Error DPCCH measurement result.
- 27. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 28. Execute **AVG_HSDPCCHRCDE?** to read the Relative Code Domain Error HS-DPCCH measurement result.
- 29. Execute **AVG_EDPCCHRCDE**? to read the Relative Code Domain Error E-DPCCH measurement result.
- 30. Execute **AVG_EDPDCH1RCDE?** to read the Relative Code Domain Error E-DPDCH1 measurement result.
- 31. Confirm the Relative Code Domain Error is Relative Code Domain Error  $\leq$  -15.5 dB, when -21 dB < ECDP and Relative Code Domain Error  $\leq$  -36.5 – ECDP, when -30 dB  $\leq$  ECDP  $\leq$  -21 dB.
- 32. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 33. Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 34. Wait 150 ms until the UE power becomes -18.0 dBm.
- 35. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 36. Repeat procedures 19 to 31.

Relative Code	Domain Er	ror		(Meas, (	Count :	20/	20)	
	Relative Code Domain Error			CDP	ECDP			
	Avg.	Max	Min	Avg.	Avg.			
DPCCH	-35.73	-32.99	-50.26	-18.46	-18.46	dB		
DPDCH	-32.64	-29.18	-36.36	-15.43	-21.45	dB		
HS-DPCCH	-41.35	-37.21	-53.37	-12.46	-12.46	dB		
E-DPCCH	-41.30	-37.25	-49.73	-16.09	-16.09	dB		
E-DPDCH1	-38.78	-37.93	-39.63	-0.58	-18.64	dB		
E-DPDCH2	-1.04	-0.31	-2.66	-35.37	-53.44	dB		

[Subtest2]

- 37. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- Execute SET_HSSUBTEST SUBTEST2 to set [Absolute Grant Value] to [12], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [6], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 39. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 40. Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 41. Wait 150 ms until the UE power becomes 15.0 dBm.
- 42. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 43. Execute **SWP** to perform HSUPA Throughput measurement and RCDE measurement.
- 44. Execute AVG_ETFCI? to read the E-TFCH measurement result and confirm it is 67.
- 45. Execute AVG_DPCCHECDP? to read the ECDP DPCCH measurement result.
- 46. Execute **AVG_DPDCHECDP?** to read the ECDP DPDCH measurement result.
- 47. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 48. Execute **AVG_EDPCCHECDP?** to read the ECDP E-DPCCH measurement result.
- 49. Execute **AVG_EDPDCH1ECDP?** to read the ECDP E-DPDCH1 measurement result.
- 50. Execute AVG_DPCCHRCDE? to read the Relative Code Domain Error DPCCH measurement result.
- 51. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 52. Execute **AVG_HSDPCCHRCDE?** to read the Relative Code Domain Error HS-DPCCH measurement result.
- 53. Execute AVG_EDPCCHRCDE? to read the Relative Code Domain Error E-DPCCH measurement result.
- 54. Execute **AVG_EDPDCH1RCDE?** to read the Relative Code Domain Error E-DPDCH1 measurement result.
- 55. Confirm the Relative Code Domain Error is Relative Code Domain Error  $\leq -15.5$ dB, when -21dB  $\leq$  ECDP and Relative Code Domain Error  $\leq -36.5 - ECDP$ , when -30 dB  $\leq ECDP \leq -21$ dB.
- 56. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 57. Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 58. Wait 150 ms until the UE power becomes -18.0 dBm.
- 59. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 60. Repeat procedures 43 to 55.

Relative Code	Domain Er	ror		(Meas.	Count :	20/	20)	
	Relative Code Domain Error			CDP	ECDP			
	Avg.	Max	Min	Avg.	Avg.			
DPCCH	-37.27	-34.06	-44.12	-14.06	-14.06	dB		
DPDCH	-41.49	-38.57	-44.16	-5.99	-12.01	dB		
HS-DPCCH	-43.72	-38.51	-51.13	-8.11	-8.11	dB		
E-DPCCH	-48.35	-44.03	-56.15	-7.91	-7.91	dB		
E-DPDCH1	-33.85	-33.16	-34.91	-4.08	-22.14	dB		
E-DPDCH2	-0.43	0.06	-1.14	-35.41	-53.47	dB		

[Subtest3]

- 61. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 62. Execute SET_HSSUBTEST SUBTEST3 to set [Absolute Grant Value] to [15], [Number of E-TFCIs] to [2], [Reference E-TFCI] to [11,92], [Reference E-TFCI PO] to [4,18], [Beta C] to [15], [Beta D] to [9], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 63. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 64. Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 65. Wait 150 ms until the UE power becomes 15.0 dBm.
- 66. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 67. Execute SWP to perform HSUPA Throughput measurement and RCDE measurement .
- 68. Execute AVG_ETFCI? to read the E-TFCH measurement result and confirm it is <u>92.</u>
- 69. Execute AVG_DPCCHECDP? to read the ECDP DPCCH measurement result.
- 70. Execute **AVG_DPDCHECDP?** to read the ECDP DPDCH measurement result.
- 71. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 72. Execute **AVG_EDPCCHECDP?** to read the ECDP E-DPCCH measurement result.
- 73. Execute **AVG_EDPDCH1ECDP?** to read the ECDP E-DPDCH1 measurement result.
- 74. Execute **AVG_EDPDCH2ECDP?** to read the ECDP E-DPDCH2 measurement result.
- 75. Execute **AVG_DPCCHRCDE?** to read the Relative Code Domain Error DPCCH measurement result.
- 76. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 77. Execute **AVG_HSDPCCHRCDE?** to read the Relative Code Domain Error HS-DPCCH measurement result.
- 78. Execute AVG_EDPCCHRCDE? to read the Relative Code Domain Error E-DPCCH measurement result.
- 79. Execute **AVG_EDPDCH1RCDE?** to read the Relative Code Domain Error E-DPDCH1 measurement result.
- 80. Execute **AVG_EDPDCH2RCDE?**to read the Relative Code Domain Error E-DPDCH2 measurement result.
- 81. Confirm the Relative Code Domain Error is Relative Code Domain Error  $\leq -15.5$ dB, when -21dB  $\leq$  ECDP and Relative Code Domain Error  $\leq -36.5 - ECDP$ , when -30 dB  $\leq ECDP \leq -21$  dB.
- 82. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 83. Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 84. Wait 150 ms until the UE power becomes -18.0 dBm.
- 85. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 86. Repeat procedures 67 to 81.

Relative Code	Domain Er	ror		(Meas.	Count :	20/	20)	
	Relative	Code Doma	in Error	CDP	ECDP			
	Avg.	Max	Min	Avg.	Avg.			
DPCCH	-39.27	-34.75	-47.65	-14.51	-14.51	dB		
DPDCH	-27.74	-25.45	-30.84	-18.95	-24.97	dB		
HS-DPCCH	-47.76	-44.51	-59.01	-8.52	-8.52	dB		
E-DPCCH	-46.47	-41.99	-52.47	-8.54	-8.54	dB		
E-DPDCH1	-32.53	-31.71	-33.30	-4.76	-22.82	dB		
E-DPDCH2	-32.52	-31.95	-33.17	-4.74	-22.80	dB		

[Subtest4]

- 87. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- Execute SET_HSSUBTEST SUBTEST4 to set [Absolute Grant Value] to [17], [Number of E-TFCIs] to [5], [Reference E-TFCI] to [11,67,71,75,81], [Reference E-TFCI PO] to [4,18,23,26,27], [Beta C] to [2], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [5].
- 89. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 90. Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 91. Wait 150 ms until the UE power becomes 15.0 dBm.
- 92. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 93. Execute SWP to perform HSUPA Throughput measurement and RCDE measurement .
- 94. Execute AVG_ETFCI? to read the E-TFCH measurement result and confirm it is 71.
- 95. Execute AVG_DPCCHECDP? to read the ECDP DPCCH measurement result.
- 96. Execute AVG_DPDCHECDP? to read the ECDP DPDCH measurement result.
- 97. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 98. Execute **AVG_EDPCCHECDP?** to read the ECDP E-DPCCH measurement result.
- 99. Execute **AVG_EDPDCH1ECDP?** to read the ECDP E-DPDCH1 measurement result.
- 100. Execute AVG_DPCCHRCDE? to read the Relative Code Domain Error DPCCH measurement result.
- 101. Execute AVG_DPDCHRCDE? to read the Relative Code Domain Error DPDCH measurement result.
- 102. Execute **AVG_HSDPCCHRCDE?** to read the Relative Code Domain Error HS-DPCCH measurement result.
- 103. Execute AVG_EDPCCHRCDE? to read the Relative Code Domain Error E-DPCCH measurement result.
- 104. Execute **AVG_EDPDCH1RCDE?** to read the Relative Code Domain Error E-DPDCH1 measurement result.
- 105.Confirm the Relative Code Domain Error is<br/>Relative Code Domain Error  $\leq -15.5$ dB, when -21 dB < ECDP and<br/>Relative Code Domain Error  $\leq -36.5$  ECDP, when -30 dB  $\leq$  ECDP  $\leq -21$  dB.
- 106. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 107. Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 108. Wait 150 ms until the UE power becomes -18.0 dBm.
- 109. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 110. Repeat procedures 93 to 105.

Relative Code	Domain Er	ror		(Meas.	Count :	20/	20)	
	Relative	Code Doma	in Error	CDP	ECDP			
	Avg.	Max	Min	Avg.	Avg.			
DPCCH	-36.14	-31.45	-44.98	-19.86	-19.86	dB		
DPDCH	-47.73	-45.67	-50.69	-2.27	-8.29	dB		
HS-DPCCH	-35.82	-32.18	-44.66	-13.85	-13.85	dB		
E-DPCCH	-39.28	-33.78	-46.80	-19.62	-19.62	dB		
E-DPDCH1	-34.11	-32.88	-35.09	-4.65	-22.71	dB		
E-DPDCH2	-0.68	0.06	-2.06	-35.07	-53.13	dB		

Subtest in Table C.11.1.3	Code	Nominal Code Domain Power	Nominal Code Spreading Factor	
	DPCCH	-18.5	256	-18.5
	DPDCH	-15.8	64	-21.8
1	HS-DPCCH	-12.5	256	-12.5
	E-DPCCH	-16.5	256	-16.5
	E-DPDCH	-0.5	4	-18.6
	DPCCH	-14.0	256	-14.0
	DPDCH	-6.0	64	-12.0
2	HS-DPCCH	-8.0	256	-8.0
	E-DPCCH	-8.0	256	-8.0
	E-DPDCH	-4.1	4	-22.2
	DPCCH	-14.6	256	-14.6
2	DPDCH	-19.1	64	-25.1
	HS-DPCCH	-8.6	256	-8.6
5	E-DPCCH	-8.6	256	-8.6
	E-DPDCH1	-4.7	4	-22.8
	E-DPDCH2	-4.7	4	-22.8
4	DPCCH	-19.7	256	-19.7
	DPDCH	-2.2	64	-8.2
	HS-DPCCH	-13.7	256	-13.7
	E-DPCCH	-19.7	256	-19.7
	E-DPDCH	-4.7	4	-22.8

## Table 1.12-4 3GPP TS34.121 Table 5.13.2B.8: Nominal ECDP Ratios

## Table 1.12-5 3GPP TS34.121 Table 5.13.2B.9: Relative Code Domain Error Test Requirement

ECDP dB	Relative Code Domain Error dB
–21 < ECDP	≤ -15.5
-30 ≤ ECDP ≤ -21	≤ -36.5 - ECDP
ECDP < -30	No requirement

# 1.13. HSPA Evolution Measurement

# 1.13.1. E-DCH RF Test (TTI 2ms/16QAM) Location Registration

Location registration with E-DCH RF Test (TTI 2ms/16QAM) required to connect with HSPA Evolution.

- 1. Execute **PRESET_3GPP** to initialize the parameter settings for 3GPP.
- Execute CHCODING EDCHTEST to set [Channel Coding] to [E-DCH RF Test].
  Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel] to test TS34.121 6.3B.
- 3. Execute HSUSET TTI2_16QAM to set [HSUPA Set of Parameters] to [TTI 2ms(16QAM)]. Execute HSHSET HSET8_64QAM to set to [H-Set8(64QAM)] to test TS34.121 6.3B.
- 4. Execute INTEGRITY ON to set [Integrity Protection] to [On].
- 5. UE power On.
- 6. Execute CALLSTAT? and wait until the response returns 2(=Idle(Regist)).

## 1.13.2. E-DCH RF Test (TTI 2ms/16QAM) Connection

Execute the following procedure (refer to location registration procedure of item 1.13.1 E-D~CH RF Test (TTI 2 ms/16QAM) after terminal location registration is completed.

- 1. Execute CALLSA to connect with E-DCH RF Test (TTI 2ms/16QAM).
- 2. Execute CALLSTAT? and wait until the response returns 7(=Test Loop Mode).

## 1.13.3. E-DCH RF Test (TTI 2ms/16QAM) Disconnection

- 1. Execute CALLSO to disconnect E-DCH RF Test (TTI 2ms/16QAM).
- 2. Execute CALLSTAT? and wait until the response returns 2(=Idle(Regist)).

## 1.13.4. Channel Change by Handover

Measurement is usually executed for three frequency (L, M, and H) points. In this case, if the channel is switched by handover, the channel can be switched quickly because it is not necessary to reconnect. At handover, the Output Level is increased slightly so that handover does not fail. However, execution of any GPIB commands sent while handover is executing is delayed until handover is completed.

- 1. Perform TRX measurement with M channel.
- 2. Execute CHAN 9613 to handover to L channel.
- 3. Perform TRX measurement.
- 4. Execute CHAN 9887 to handover to H channel.
- 5. Perform TRX measurement.

# 1.13.5. 5.2E UE Relative Code Domain Power Accuracy for HS-DPCCH and E-DCH with 16QAM

#### The following procedure is based on the 3GPP TS 34.121-1 V9.1.0 procedure.

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. Execute CHCODING EDCHTEST to set [Channel Coding] to [E-DCH RF Test].
- 4. Execute HSUSET TTI2_16QAM to set [HSUPA Set of Parameters] to [TTI 2ms(16QAM)].
- 5. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4] ms, [Ack-Nack Repetition Factor] to [3], [CQI Repetition Factor] to [2], [TPC Algorithm] to [2].
- 6. Connect with E-DCH RF Test, TTI 2 ms (16QAM).
- 7. Execute **OLVL -86.0** to set [Output Level] to [-86.0] dBm.
- 8. Execute **TPUTU_MEAS ON** to set [HSUPA Throughput] measurement to [On].
- 9. Execute **TPUTU_SAMPLE 15** to set [HSUPA Throughput Number of Sample] to [15].

#### [Sub-test1]

- 10. Execute **SCRSEL FMEAS** to set Fundamental Measurement screen.
- 11. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8]
- 12. Execute SET_HSSUBTEST SUBTEST1 to set [Absolute Grant Value] to [14], [Number of E-TFCIs] to [3], [Reference E-TFCI] to [105,116,127], [Reference E-TFCI PO] to [12,14,16], [Beta C] to [15], [Beta D] to [0], [Delta ACK] to[8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 13. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern & Inner Loop Power Control].
- 14. Execute ILVL 16.0 to set [Input Level] to [+16.0] dBm.
- 15. Wait 150 ms until the UE power becomes 16.0 dBm.
- 16. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 17. Execute **ILVL 26.0** to set [Input Level] to [+26.0] dBm.
- 18. Execute **SWP** to perform HSUPA Throughput measurement and confirm the E-TFCI measurement result is 105.
- 19. Execute **TPC_CMD_UP** to raise [TxPower] only 1 dB and wait 150 ms.
- 20. Execute SWP to perform HSUPA Throughput measurement.]
- 21. Execute **AVG_ETFCI**? to read the E-TFCI measurement result, and confirm it is 105.
- 22. Repeat steps 19 through 21 until the E-TFCI measurement result becomes not 105.
- 23. Execute **TPC_CMD_DOWN** to reduce [TxPower] only 1 dB and wait 150 ms.
- 24. Execute **SWP** to perform HSUPA Throughput measurement and confirm the E-TFCI measurement result is 105.

(Repeat steps 23 and 24 if the E-TFCI measurement result is not 105.)

- 25. Execute **SCRSEL TDMEAS** to set Domain Measurement screen.
- 26. Execute **MEASOBJ HSDPCCH_MA** to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 27. Execute HSMA_ITEM CDP to display the results of the HS-DPCCH (Modulation Analysis) measurement at CDP Ratio.
- 28. Execute SWP to perform CDP Ratio measurement.
- Execute CDPPASS? to read the result. Confirm the result is PASS.
  When the result is the Accuracy [dB] in 3GPP TS.34.121 Table 5.2E.6, it means PASS. If not, it means FAIL.
|         | HS-DP(                       | CCH(Modulat | ion Analysi                      | s) (Internal | Trigger) |               |
|---------|------------------------------|-------------|----------------------------------|--------------|----------|---------------|
| Ref. Li | ine :                        | Man         | ker Off                          |              |          |               |
| 10.0    | dBm Juda                     | ment:       |                                  |              |          |               |
|         | Pa                           | iss         |                                  |              |          |               |
| (2dB/d  | iv) 🗌                        |             |                                  |              | E-TFC    | I: 75         |
|         |                              |             | 1                                | I            |          |               |
|         |                              |             |                                  |              |          |               |
|         | and an and a second states a |             | a data aya da aya da aya aya aya |              |          |               |
|         |                              |             |                                  |              |          |               |
|         |                              |             |                                  |              |          | :             |
|         |                              | ·,          | · · ·                            |              |          |               |
| 1 month | J<br> <br>                   |             | LL<br>     <br>                  |              |          | www.wadda.com |
|         | ·                            | ·           | ;;;                              | ii<br>' '    |          | ·             |
| -1 0000 | [ms]                         |             |                                  |              | · · · ·  | 13,0000       |
| 1.0000  | Fure-T                       |             | - 0,0000                         |              |          | 10.0000       |
| UE rela | tive code                    | domain po   | ower ratio                       | in dB:       |          |               |
| Point   | DPCCH                        | DPDCH       | HS-DPCCH                         | E-DPCCH      | E-DPDCH1 | E-DPDCH2      |
| 1       | -9.34                        | -6.63       | -3.32                            | -7.29        | -18,95   | -55.09        |
| 2       | -18.58                       | -15.90      | -12.52                           | -16.55       | -0.55    | -34.18        |
| 3       | -9.39                        | -6.68       | -3.35                            | -7.33        | -19.01   | -49.23        |

#### Chart 1.13-1 3GPP TS34.121 Table 5.2E.5: UE relative code domain power nominal ratios

Sub-Test	Meas		Expected	d Relative Co	de Domain Po	ower in dB	
in Table C.11.1.4	Point	DPCCH	HS-DPCCH	E-DPCCH	E-DPDCH 1	E-DPDCH 2	E-DPDCH 3,4
	1	-9.6	-3.6	-3.6	-19.1	OFF	OFF
1	2	-13.4	-7.4	-7.4	-7.4	-7.4	-9.4
	3	-9.6	-3.6	-3.6	-19.1	OFF	OFF

# Chart 1.13-2 3GPP TS34.121 Table 5.2E.6: UE relative code domain power accuracy test requirements, HSDPA and E-DCH with 16QAM

Nominal CDP ratio	Accuracy (dB)
≥ -10 dB	±1.7
-10 dB to ≥ -15 dB	±2.3
-15 dB ≥ -20 dB	±2.9
-20 dB ≥ -30 dB	[±3.5]

## 1.13.6. 5.13.1AAA EVM and IQ origin offset for HS-DPCCH and E-DCH with 16 QAM

#### The following procedure is based on the 3GPP TS 34.121-1 V9.1.0 procedure.

- 1. Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 2. Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. Execute CHCODING EDCHTEST to set [Channel Coding] [E-DCH RF Test].
- 4. Execute HSUSET TTI2_16QAM to set [HSUPA Set of Parameters] to [TTI 2ms(16QAM)].
- 5. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4] ms, [Ack-Nack Repetition Factor] to [3], [CQI Repetition Factor] to [2], [TPC Algorithm] to [2].
- 6. Connect with E-DCH RF Test, TTI 2 ms (16QAM).
- 7. Execute OLVL -86.0 to set [Output Level] to [-86.0] dBm.
- 8. Execute MOD_MEAS ON to set [Modulation Analysis] to [On].
- 9. Execute MOD_AVG 20 to set [Average Count] of Modulation Analysis measurement to [20] times.

#### [Sub-test1]

- 10. Execute **SCRSEL FMEAS** to set Fundamental Measurement screen.
- 11. Execute **SET_HSDELTA_CQI 8** to set [Delta CQI Setting] to [8].
- 12. Execute SET_HSSUBTEST SUBTEST1 to set [Absolute Grant Value] to [14], [Number of E-TFCIs] to [3], [Reference E-TFCI] to [105,116,127], [Reference E-TFCI PO] to [12,14,16], [Beta C] to 15, [Beta D] to [0], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 13. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 14. Execute ILVL -28.0 to set [Input Level] to [-28.0] dBm.
- 15. Wait 150 ms until the UE power becomes -28.0 dBm.
- 16. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 17. Execute **SWP** to perform Modulation Analysis measurement.
- 18. Execute **AVG_ORGNOFS?** to read Origin Offset measurement result.
- 19. Confirm the measurement result is <16.5 dB.

# 1.13.7. 5.13.2C Relative Code Domain Error for HS-DPCCH and E-DCH with 16QAM

#### The following procedure is based on the 3GPP TS 34.121-1 V9.1.0 procedure.

- 1. Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. Execute CHCODING EDCHTEST to set [Channel Coding] to [E-DCH RF Test].
- 4. Execute HSUSET TTI2_16QAM to set [HSUPA Set of Parameters] to [TTI 2ms(16QAM)].
- 5. Execute **SET_PWRPAT HSMAXPWR** to set [CQI Feedback Cycle] to [4] ms, [Ack-Nack Repetition Factor] to 3, [CQI Repetition Factor] to [2], [TPC Algorithm] to [2].
- 6. Connect with E-DCH RF Test, TTI 10 ms (16QAM).
- 7. Execute OLVL -86.0 to set [Output Level] to [-86.0] dBm.
- 8. Execute **RCDE_MEAS ON** to set RCDE measurement to [On].
- 9. Execute RCDE_AVG 20 to set [Average Count ] of RCDE measurement to [20] times.
- 10. Execute **TPUTU_MEAS ON** to set [HSUPA Throughput] measurement to [On].
- 11. Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].

[Sub-test1]

- 12. Execute **SCRSEL FMEAS** to set Fundamental Measurement screen.
- 13. Execute SET_HSDELTA_CQI 8 to set [Delta CQI Setting] to [8].
- 14. Execute SET_HSSUBTEST SUBTEST1 to set [Absolute Grant Value] to [14], [Number of E-TFCIs] to [3], [Reference E-TFCI] to [105,116,127], [Reference E-TFCI PO] to [12,14,16], [Beta C] to [15], [Beta D] to [0], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8], [Delta E-DPCCH] to [8].
- 15. Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 16. Execute ILVL 16.0 to set [Input Level] to [+16.0] dBm.
- 17. Wait 150 ms until the UE power becomes [16.0] dBm.
- 18. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 19. Execute **ILVL 26.0** to set [Input Level] to [+26.0] dBm.
- 20. Execute **SWP** to perform HSUPA Throughput measurement and confirm the E-TFCI measurement result is 105.
- 21. Execute **TPC_CMD_UP** to raise [TxPower] only 1 dB and wait 150 ms.
- 22. Execute **SWP** to perform HSUPA Throughput measurement.
- 23. Execute **AVG_ETFCI**? to read the E-TFCI measurement result, and confirm it is 105.
- 24. Repeat steps 21 through 23 until the E-TFCI measurement result becomes not 105.
- 25. Execute **TPC_CMD_DOWN** to reduce [TxPower] only 1 dB and wait 150 ms.
- 26. Execute **SWP** to perform HSUPA Throughput measurement and confirm the E-TFCI measurement result is 105.

(Repeat steps 25 and 26 if the E-TFCI measurement result is not 105.)

- 27. Execute **AVG_DPCCHECDP?** to read the ECDP DPCCH measurement result.
- 28. Execute **AVG_HSDPCCHECDP?** to read the ECDP HS-DPCCH measurement result.
- 29. Execute **AVG_EDPCCHECDP?** to read the ECDP E-DPCCH measurement result.
- 30. Execute AVG_DPCCHRCDE? to read the Relative Code Domain Error DPCCH measurement result.
- 31. Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 32. Execute AVG_EDPCCHRCDE? to read the Relative Code Domain Error E-DPCCH measurement result.
- Confirm the Relative Code Domain Error is Relative Code Domain Error <= -17.5 dB, when -22dB < ECDP and Relative Code Domain Error <= -39.5 – ECDP, when -30dB <= ECDP <= -22dB.</li>
- 34. Execute **AVG_EDPDCH1ECDP?** to read the ECDP E-DPDCH1 measurement result.
- 35. Execute **AVG_EDPDCH2ECDP?** to read the ECDP E-DPDCH2 measurement result.
- 36. Execute **AVG_EDPDCH3ECDP?** to read the ECDP E-DPDCH3 measurement result.
- 37. Execute **AVG_EDPDCH4ECDP?** to read the ECDP E-DPDCH4 measurement result.
- 38. Execute AVG_EDPDCH1RCDE? to read the Relative Code Domain Error E-DPDCH1 measurement result.
- 39. Execute **AVG_EDPDCH2RCDE?** to read the Relative Code Domain Error E-DPDCH2 measurement result.
- 40. Execute **AVG_EDPDCH3RCDE?** to read the Relative Code Domain Error E-DPDCH3 measurement result.
- 41. Execute AVG_EDPDCH4RCDE? to read the Relative Code Domain Error E-DPDCH4 measurement result.
- 42. Confirm the Relative Code Domain Error is Relative Code Domain Error <= -17.5 dB, when -25.5dB < ECDP, Relative Code Domain Error <= -43.0 – ECDP, when -30 dB <= ECDP <= -25.5 dB.</li>
- 43. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 44. Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 45. Wait 150 ms until the UE power becomes -18.0 dBm.
- 46. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 47. Repeat procedures 19 to 36.

Sub-Test in Table C.11.1.4	Code	Nominal Code Domain Power	Spreading Factor	Nominal ECDP
	DPCCH	-13.4	256	-13.4
	HS-DPCCH	-7.4	256	-7.4
1	E-DPCCH	-7.4	256	-7.4
	E-DPDCH1	-7.4	2	-28.5
	E-DPDCH2	-7.4	2	-28.5
	E-DPDCH3	-9.4	4	-27.5
	E-DPDCH4	-9.4	4	-27.5

Chart 1.13-3 3GPP TS34.121 Table 5.13.2C.7: Nominal ECDP ratios

# Chart 1.13-4 3GPP TS34.121 Table 5.13.2C.8: Relative Code Domain Error test requirement, codes without 16QAM

ECDP dB	Average Relative Code Domain Error dB
-22 < ECDP	≤ -17.5
-30 ≤ ECDP ≤ -22	≤ -39.5 - ECDP
ECDP < -30	No requirement

Chart 1.13-5 3GPP TS34.121 Table 5.13.2C.9: Relative Code Domain Error test requirement with 16QAM

ECDP dB	Average Relative Code Domain Error dB
-25.5 < ECDP	≤ -17.5
-30 ≤ ECDP ≤ -25.5	≤ -43.0 – ECDP
ECDP < -30	No requirement

## 1.13.8. 6.3B Maximum Input Level for HS-PDSCH Reception (64QAM)

The following procedure is based on the 3GPP TS 34.121-1 V9.1.0 procedure. This test connects with Fixed Reference Channel H-Set8 (64QAM).

- 1. Execute ULGAINPAR 8,15,8,8,8 to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8].
- 2. Execute **TPCALGO 2** to set [TPC Algorithm] to [2].
- 3. Execute CHAN 9750 to set to M channel (for Band I).
- 4. Execute CHCODING FIXREFCH to set [Channel Coding] to [Fixed Reference Channel].
- 5. Execute HSHSET HSET8_64QAM to set [HSUPA Set of Parameters] to [H-Set8(64QAM)].
- 6. Connect with Fixed Reference Channel, H-Set8(64QAM).
- 7. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 8. Execute **ILVL 0.0** to set [Input Level] to [0.0] dBm.
- 9. Wait 100 ms until the UE power becomes [0.0] dBm.
- 10. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 11. Execute OLVL -25.7 to set [Output Level] to [-25.7] dBm.
- 12. Execute **DDPCHPWR -13.0** to set [DPCH_Ec/Ior] to [-13.0] dB.
- 13. Execute HSSCCHPWR -13.0 to set [HS-SCCH_Ec/Ior] to [-13.0 dB].
- 14. Execute **HSPDSCHPWR -2.0** to set [HS-PDSCH_Ec/Ior] to [-2.0] dB.
- 15. Execute **TPUT_MEAS ON** to set [HSDPA Throughput] measurement to [On].
- 16. Execute **TPUT_SAMPLE 1000** to set number of HSDPA Throughput measurement sample to [1000] Block.
- 17. Execute **TPUT_LIMIT 11800** to set lower limit of HSDPA Throughput measurement to [11800] kbps.
- 18. Execute **SWP** to perform HSDPA Throughput measurement.
- 19. Execute **TPUTPASS?** to read HSDPA Throughput measurement result. Confirm the result is PASS.

HSDPA Throughput	
Throughput	13252 kbps
Block Error Rate	0.0000 (= 0.00 %)
	0.00E+00
Error Count	0
	(NACK 0 DTX 0)
Transmitted/Sample	1000 / 1000 Block
Judgment	Pass

# 1.14. DC-HSDPA Measurement

* This chapter explains measurements when Phone1 and Phone 2 are used as Serving Cell and Secondary Serving Cell, respectively for DC-HSDPA connection.

## 1.14.1. Synchronization of Frame Timing between 2 cells

Synchronizing frame timing between 2 cells is required when connecting with DC-HSDPA.

- 1. [Phone1] Execute ENTERSYNC IN_SLAVE to be slave condition of frame timing synchronization.
- 2. [Phone2] Execute ENTERSYNC MASTER to perform frame timing synchronization.
- 3. [Phone1] Execute ENTERSYNC? to check response becomes 1 (synchronized).

#### 1.14.2. Location Registration for DC-HSDPA

Location registration with Combined is required when connecting using DC-HSDPA.

- 1. [Phone1-2] Execute PRESET_3GPP to preset parameters for 3GPP.
- 2. [Phone1-2] Execute CHCODING FRC_DCHSDPA to set [Channel Coding] to [FRC for DC-HSDPA].
- 3. [Phone1] Execute INTEGRITY ON to set [Integrity Protection] to [On].
- 4. [Phone1] Execute **REGMODE COMBINED** to set [Registration Mode] to [Combined].
- 5. [Phone2] Execute LVL OFF to set [Output Level Total)] to [Off] for Secondary Serving Cell.
- 6. **[Phone2]** Execute **CALLPROC OFF** to set [Call Processing] of Secondary Serving Cell to [Off] to output each channel.
- 7. Turn on the UE power.
- 8. [Phone1] Execute CALLSTAT? and wait until the response becomes 2 (= Idle (Regist)).

## 1.14.3. Connection with DC-HSDPA

The process after location registration is shown below. (See 1.14.2 Location Registration for DC-HSDPA.)

[H-Set12(QPSK) connection example]

- [Phone1] Execute DCHSHSET HSET12_QPSK to set [Channel Coding] to [FRC for DC-HSDPA]&[H-Set12(QPSK)].
- 2. [Phone1] Execute S_DLCHAN 10725 to set [Second Cell UARFCN] to [10725]CH for Secondary Serving Cell (when the DL channel of Serving Cell is 10700).
- 3. [Phone1] Execute CALLSA to connect with DC-HSDPA
- 4. [Phone1] Execute CALLSTAT? and wait until the response becomes 7 (=Test Loop Mode).
- [Phone2] Execute DCHSHSET HSET12_QPSK to set [Channel Coding] to [FRC for DC-HSDPA]&[H-Set12(QPSK)].
- 6. [Phone2] Execute DLCHAN 10725 to set [DL Channel & Frequency] to [10725]CH for Secondary Serving Cell.
- 7. [Phone2] Execute LVL ON to set [Output Level(Total)] to [On] for Secondary Serving Cell.

#### 1.14.4. Disconnection with DC-HSDPA

- 1. [Phone1] Execute CALLSO to disconnect with DC-HSDPA (by pressing "End Call" key).
- 2. [Phone1] Execute CALLSTAT? and wait until the response becomes 2 (=Idle(Regist)).

## 1.14.5. Channel Switching using Handover

Usually, measurement is performed at three frequency points (L, M, H). In this case, the Channel can be switched quickly without reconnection by switching it at handover with a higher output level and Beta C for UL DPCCH. When a GPIB command is sent during handover, it waits until handover ends.

- 1. [Phone1] Execute RX measurement with M channel.
- 2. [Phone1] Execute S_DLCHAN 10588 to set [Second Cell UARFCN] to [10588]CH for Secondary Serving Cell.
- 3. [Phone1] Execute CHAN 9613 (or DLCHAN 10563) to set [UL Channel & Frequency] to [9613]CH and perform handover to L channel.
- 4. [Phone2] Execute DLCHAN 10588 to set [DL Channel & Frequency] to [10588]CH for Secondary Serving Cell.
- 5. [Phone1] Execute RX measurement.
- 6. [Phone1] Execute S_DLCHAN 10812 to set [Second Cell UARFCN] to [10812]CH for Secondary Serving Cell.
- 7. [Phone1] Execute CHAN 9887 (or DLCHAN 10837) to set [UL Channel & Frequency] to [9887]CH and perform handover to handover to H channel.
- 8. [Phone2] Execute DLCHAN 10812 to set [DL Channel & Frequency] to [10812]CH for Secondary Serving Cell.
- 9. [Phone1] Execute RX measurement.

## 1.14.7. 6.2A Reference Sensitivity Level for DC-HSDPA

- 1. [Phone1] Execute ULGAINPAR 8,15,8,8,8 to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to [8], [Delta ACK] to [8].
- 2. [Phone1] Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. [Phone1] Execute S_DLCHAN 10725 to set [Second Cell UARFCN] to [10725]CH for Secondary Serving Cell.
- 4. [Phone1] Execute CHAN 9750 (or DLCHAN 10700) to set [UL Channel & Frequency] to [9750]CH Cell (M channel, when Band I).
- 5. [Phone2] Execute DLCHAN 10725 to set [DL Channel & Frequency] to [10725]CH for Secondary Serving Cell Cell (M channel, when Band I).
- 6. Connect with Fixed Reference Channel H-Set12(QPSK) (see 1.14.3 Connection with DC-HSDPA).
- 7. [Phone1] Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [ALL 1].
- 8. [Phone1-2] Execute OLVL -102 to set [Output Level(Total)] to [-102] dBm (when Band I).
- 9. [Phone1-2] Execute HSSCCHPWR -9.0 to set [HS-SCCH_Ec/Ior] to [-9.0] dB.
- 10. [Phone1-2] Execute HSPDSCHPWR -10.3 to set [HS-PDSCH_Ec/Ior] to [-10.3] dB.
- 11. [Phone1] Execute TPUT_MEAS ON to set [HSDPA Throughput measurement] to [On].
- 12. [Phone1] Execute TPUT_SAMPLE 1000 to set [Number of Sample] at HSDPA Throughput to [1000] Block.
- 13. **[Phone1]** Execute **SWP** to perform HSDPA Throughput measurement.
- 14. **[Phone1]** Execute **TPUT_BLER?** to read the Block Error Rate measurement result of Serving Cell. Confirm the measurement result is lower than 0.1.
- 15. **[Phone1]** Execute **TPUT_S_BLER?** to read the Block Error Rate measurement result of Secondary Serving Cell. Confirm the measurement result is lower than 0.1.

/Fundamental Measurements Output Main		Loop Mod	de 1	Phone-2	Phone-1
Parameter Fundam	ental	LIF	Report	π-cDHH	π-conin
End	encar	UEP	ower :	-39.2 dBm	Fundamental
HSDPA Throughout					T
Throughput(Dual Cell)	42192	kbps			A HSDPA
Serving Cell					<mark>G</mark> Throughput
Throughput	21096	kbps			
Block Error Rate	0.000	(=	0.00 发		
	0.00E+00	2			
Error Count	(	)			
	( NACK	0	DTX	0)	
Iransmitted/Sample	50	/	20 Block		
Secondary Serving Coll	Pass	8			
Throughout	21096	khne			
Block Error Bate	0.000	(=	0.00 %)		
	0.00E+00				
Error Count	(	5			
	( NACK	0	DTX	0)	
Transmitted/Sample	50	0 /	50 Block		
Judgment	Pass	8			
					123

## 1.14.8. 6.3C Maximum Input Level for DC-HSDPA Reception (16QAM)

- 1. [Phone1] Execute ULGAINPAR 8,15,8,8,8 to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to [8], [Delta ACK] to [8].
- 2. [Phone1] Execute TPCALGO 2 to set [Power Control Algorithm] to [Algorithm 2].
- 3. [Phone1] Execute S_DLCHAN 10725 to set [Second Cell UARFCN] to [10725]CH for Secondary Serving Cell.
- 4. [Phone1] Execute CHAN 9750 (or DLCHAN 10700) to set [UL Channel & Frequency] to [9750]CH Cell (M channel, when Band I).
- 5. [Phone2] Execute DLCHAN 10725 to set [DL Channel & Frequency] to [10725]CH for Secondary Serving Cell (M channel, when Band I).
- 6. Connect with Fixed Reference Channel H-Set1A(16QAM) (see 1.14.3 Connection with DC-HSDPA).
- 7. [Phone1] Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 8. [Phone1] Execute ILVL 20.0 to set [Input Level] to [+20.0] dBm.
- 9. Wait 100 ms until UE power becomes +20.0 dBm.
- 10. [Phone1] Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 11. [Phone1-2] Execute OLVL -25.7 to set [Output Level(Total)] to [-25.7] dBm.
- 12. [Phone1-2] Execute DDPCHPWR -13.0 to set [DPCH_Ec/Ior] to [-13.0] dB.
- 13. [Phone1-2] Execute HSSCCHPWR -13.0 to set [HS-SCCH_Ec/Ior] to [-13.0] dB.
- 14. [Phone1-2] Execute HSPDSCHPWR -3.0 to set [HS-PDSCH_Ec/Ior] to [-3.0] dB.
- 15. [Phone1] Execute TPUT_MEAS ON to set [HSDPA Throughput measurement] to [On].
- 16. **[Phone1]** Execute **TPUT_SAMPLE 1000** to set [Number of Sample] at HSDPA Throughput to [1000] Block.
- 17. [Phone1] Execute TPUT_LIMIT 700 to set [Lower Limit] at HSDPA Throughput to [700] kbps.
- 18. [Phone1] Execute SWP to perform HSDPA Throughput measurement.
- 19. **[Phone1]** Execute **TPUTPASS?** to read the HSDPA Throughput measurement reault of Serving Cell. Confirm the result is PASS.
- 20. **[Phone1]** Execute **TPUTPASS_S?** to read HSDPA Throughput measurement result of Secondary Serving Cell. Confirm the result is PASS.

<fundamental measurement=""> Outp</fundamental>	Loop Mode 1 out Main	Phone-2 ₩-CDMA	Phone−1 ₩-CDMA
Parameter Fundam	<mark>ental</mark> UE Report		
End	UE Power :	-39,2 dBm	Fundamental
HSDPA Throughput			Т
Throughput(Dual Cell)	42192 kbps		A HSUPA C Throughput
Serving Cell			
Throughput	21096 kbps		
Block Error Rate	0.0000 (= 0.00 %)		
	0.00E+00		
Error Count	0		
	(NACK) 0 DTX	0)	
Transmitted/Sample	50 / 50 Block		
Judgment	Pass		
Secondary Serving Cell	01000		
Throughput	21096 kbps		
Block Error Hate	0.0000 (= 0.00 %)		
	0.00E+00		
Error Count			
T		0)	
Judgment	Pass		
			123

## 1.14.9. 6.3D Maximum Input Level for DC-HSDPA Reception (64QAM)

- 1. [Phone1] Execute ULGAINPAR 8,15,8,8,8 to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to 8, [Delta NACK] to [8], [Delta CQI] to [8].
- 2. [Phone1] Execute TPCALGO 2 to set [Power Control Algorithm] to [Algorithm 2].
- 3. [Phone1] Execute S_DLCHAN 10725 to set [Second Cell UARFCN] to [10725]CH for Secondary Serving Cell.
- 4. [Phone1] Execute CHAN 9750 (or DLCHAN 10700) to set [UL Channel & Frequency] to [9750]CH (M channel, when Band I).
- 5. [Phone2] Execute DLCHAN 10725 to set [DL Channel & Frequency] to [10725]CH for Secondary Serving Cell (M channel, when Band I).
- 6. Connect with Fixed Reference Channel H-Set8A(64QAM) (see 1.14.3 Connection with DC-HSDPA).
- 7. [Phone1] Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 8. [Phone1] Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 9. Wait 100 ms until UE power becomes 0.0 dBm.
- 10. [Phone1] Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 11. [Phone1-2] Execute OLVL -25.7 to set [Output Level(Total)] to [-25.7] dBm.
- 12. [Phone1-2] Execute DDPCHPWR -13.0 to set [DPCH_Ec/Ior] to [-13.0] dB.
- 13. [Phone1-2] Execute HSSCCHPWR -13.0 to set [HS-SCCH_Ec/Ior] to [-13.0] dB.
- 14. [Phone1-2] Execute HSPDSCHPWR -2.0 to set [HS-PDSCH_Ec/Ior] to [-2.0] dB.
- 15. [Phone1] Execute TPUT_MEAS ON to set [HSDPA Throughput measurement] to [On].
- 16. [Phone1] Execute TPUT_SAMPLE 1000 to set [Number of Sample] ot HSDPA Throughput to [1000] Block.
- 17. [Phone1] Execute TPUT_LIMIT 11800 to set [Lower Limit] at HSDPA Throughput to [11800] kbps.
- 18. [Phone1] Execute SWP to perform HSDPA Throughput measurement.
- 19. **[Phone1]** Execute **TPUTPASS?** to read the HSDPA Throughput measurement result of Serving Cell. Confirm the result is PASS.
- 20. **[Phone1]** Execute **TPUTPASS_S?** to read the HSDPA Throughput measurement result of Secondary Serving Cell. Confirm the result is PASS.

<pre><fundamental measurement=""> Outr</fundamental></pre>	ut Main	Loop Mode 1	Phone-2 ₩-CDMA	Phone-1 ₩-CDMA
Parameter Fundam	ental	UE Report		-
End		UE Power :	-39,2 dBm	Fundamental
HSDPA Throughput				T
Throughput(Dual Cell)	42193	2 kbps		A HSDPA
Serving Cell				<mark>e</mark> nnroughpuil
Throughput	21096	6 kbps		
Block Error Rate	0.000	0.00 😮		
	0.00E+00	D		
Error Count	(	D		
	( NACK ]	0 DTX	0)	
Transmitted/Sample	50	/ 50 Block		
Judgment	Pass			
Secondary Serving Cell				
Throughput	21096	6 kbps		
Block Error Rate	0,000	0.00 <b>%</b> )		
	0.00E+00	5		
Error Count	(	D		
	( NACK	0 DTX	0)	
Transmitted/Sample	50	/ 50 Block		
Judgment	Pass			
				1 Z 3

# 1.15. 4C-HSDPA Measurement

## 1.15.1. Connection and Disconnection with Single band 4C-HSDPA

## 1.15.1.1. Location Registration for Single band 4C-HSDPA

Location registration with Combined is required when connecting using Single band 4C-HSDPA.

- 1. Execute **PRESET_3GPP** to initialize the parameter settings for 3GPP.
- 2. Execute CHCODING FRC_MCHSDPA to set [Channel Coding] to [FRC for MC-HSDPA].
- 3. Execute **INTEGRITY ON** to set [Integrity Protection] to [On].
- 4. Execute **REGMODE COMBINED** to set [Registration Mode] to [Combined].
- 5. Turn on the UE power.
- 6. Execute CALLSTAT? and wait until the response becomes 2 (= Idle (Regist)).

## 1.15.1.2. Connection with Single band 4C-HSDPA

The process after location registration is shown below. (See 1.15.1.1 Location Registration for Single band 4C-HSDPA.)

[H-Set1B (16QAM) connection example]

- 1. Execute **TTL_SERVING_CELL 3** to set [Total Serving Cells] to [3].
- 2. Execute MCHSHSET HSET1B_16QAM to set [H-Set] to [H-Set1B (16QAM)].
- 3. Execute **CALLSA** to connect with 4C-HSDPA.
- 4. Execute **CALLSTAT**? and wait until the response becomes 7 (=Test Loop Mode).

## 1.15.1.3. Disconnection with Single Band 4C-HSDPA

- 1. Execute **CALLSO** to disconnect with 4C-HSDPA (by pressing "End Call" key).
- 2. Execute CALLSTAT? and wait until the response becomes 2 (=Idle(Regist)).

## 1.15.1.4. Channel Switching using Handover(Single band 4C-HSDPA)

Usually, measurement is performed at three frequency points (L, M, H). In this case, the Channel can be switched quickly without reconnection by switching it at handover with a higher output level and Beta C for UL DPCCH. When a GPIB command is sent during handover, it waits until handover ends.

- 1. Execute RX measurement with M channel.
- 2. Execute CHAN 9613 (or DLCHAN 10563) to set [UL Channel & Frequency] to [9613]CH and perform handover to L channel.

(Secondary Serving Cell1 and Secondary serving Cell2 are set automatically. When the DL channel of Serving Cell is 10563, the Second Serving Cell1 is 10588 and the Second Serving Cell2 is 10613.)

3. Execute RX measurement.

## 1.15.2. Connection and Disconnection with Dual band 4C-HSDPA

* This section explains measurements when Phone1 and Phone 2 are used as Serving Cell and Secondary Serving Cell, respectively for Dual band 4C-HSDPA connection.

#### 1.15.2.1. Synchronization of Frame Timing between 2 cells

Synchronizing frame timing between 2 cells is required when connecting with Dual band 4C-HSDPA.

- 1. [Phone1] Execute ENTERSYNC IN_SLAVE to be slave condition of frame timing synchronization.
- 2. [Phone2] Execute ENTERSYNC MASTER to perform frame timing synchronization.
- 3. [Phone1] Execute ENTERSYNC? to check response becomes 1 (synchronized).

#### 1.15.2.2. Location Registration for Dual Band 4C-HSDPA

Location registration with Combined is required when connecting using Dual band 4C-HSDPA.

- 1. [Phone1-2] Execute PRESET_3GPP to preset parameters for 3GPP.
- 2. [Phone1-2] Execute CHCODING FRC_MCHSDPA to set [Channel Coding] to [FRC for MC-HSDPA].
- 3. [Phone1] Execute INTEGRITY ON to set [Integrity Protection] to [On].
- 4. [Phone1] Execute **REGMODE COMBINED** to set [Registration Mode] to [Combined].
- 5. [Phone2] Execute LVL OFF to set [Output Level Total)] to [Off] for Secondary Serving Cell.
- 6. **[Phone2]** Execute **CALLPROC OFF** to set [Call Processing] of Secondary Serving Cell to [Off] to output each channel.
- 7. Turn on the UE power.
- 8. [Phone1] Execute CALLSTAT? and wait until the response becomes 2 (= Idle (Regist)).

## 1.15.2.3. Connection with Dual Band 4C-HSDPA

The process after location registration is shown below. (See 1.15.2.1 Location Registration for Dual band 4C-HSDPA.)

[H-Set1C (16QAM) connection example]

- 1. [Phone1] Execute TTL_SERVING_CELL 4 to set [Total Serving Cells] to [4].
- 2. [Phone1] Execute CELL_ASSIGN 3CELL_1 to set [Serving Cells Assignment] to [3Cells-1].
- 3. [Phone1] Execute MCHSHSET HSET1C_16QAM to set [H-Set] to [H-Set1C (16QAM)].
- 4. [Phone1] Execute S1_DLCHAN 10725 to set [Second Cell UARFCN 1st] to [10725]CH for Secondary Serving Cell1 (for Band I)
- 5. [Phone1] Execute S2_DLCHAN 10750 to set [Second Cell UARFCN 2nd] to [10750]CH for Secondary Serving Cell2 (for Band I).
- 6. [Phone1] Execute S3_DLCHAN 4625 to set [Second Cell UARFCN 3rd] to [4625]CH for Secondary Serving Cell3 (for Band VIII).
- 7. [Phone1] Execute CALLSA to connect with 4C-HSDPA.
- 8. [Phone1] Execute CALLSTAT? and wait until the response becomes 7 (=Test Loop Mode)
- 9. [Phone2] Execute TTL_SERVING_CELL 4 to set [Total Serving Cells] to [4].
- 10. [Phone2] Execute CELL_ASSIGN 1CELL to set [Serving Cells Assignment] to [1Cells].
- 11. [Phone2] Execute MCHSHSET HSET1C_16QAM to set [H-Set] to [H-Set1C (16QAM)].
- 12. [Phone2] Execute DLCHAN 4625 to set [Second Cell UARFCN 3rd] to [4625]CH for Secondary Serving Cell3 (for Band VIII).
- 13. [Phone2] Execute LVL ON to set [Output Level(Total)] to [On] for Secondary Serving Cell.

#### 1.15.2.4. Disconnection with Dual Band 4C-HSDPA

- 1. [Phone1] Execute CALLSO to disconnect with 4C-HSDPA (by pressing "End Call" key).
- 2. [Phone1] Execute CALLSTAT? and wait until the response becomes 2 (=Idle(Regist)).

# 1.15.2.5. Channel Switching using Handover(Dual band 4C-HSDPA)

Usually, measurement is performed at three frequency points (L, M, H). In this case, the Channel can be switched quickly without reconnection by switching it at handover with a higher output level and Beta C for UL DPCCH. When a GPIB command is sent during handover, it waits until handover ends.

- 1. [Phone1] Execute RX measurement with M channel.
- 2. [Phone1] Execute S1_DLCHAN 10588 to set [Second Cell UARFCN 1st] to [10588]CH for Secondary Serving Cell1 (for Band I).
- 3. [Phone1] Execute S2_DLCHAN 10613 to set [Second Cell UARFCN 2nd] to [10613]CH for Secondary Serving Cell2 (for Band I).
- 4. [Phone1] Execute S3_DLCHAN 4700 to set [Second Cell UARFCN 3rd] to [4700]CH for Secondary Serving Cell3 (for Band VIII).
- 5. [Phone1] Execute CHAN 9613 (or DLCHAN 10563) to set [UL Channel & Frequency] to [9613]CH and perform handover to L channel.
- [Phone2] Execute DLCHAN 4700 to set [Second Cell UARFCN 3rd] to [4700]CH for Secondary Serving Cell3 (for Band VIII).
- 7. [Phone1] Execute RX measurement.
- 8. [Phone1] Execute S1_DLCHAN 10812 to set [Second Cell UARFCN 1st] to [10812]CH for Secondary Serving Cell1 (for Band I).
- 9. [Phone1] Execute S2_DLCHAN 10787 to set [Second Cell UARFCN 2nd] to [10787]CH for Secondary Serving Cell2 (for Band I).
- 10. [Phone1] Execute S3_DLCHAN 4800 to set [Second Cell UARFCN 3rd] to [4800]CH for Secondary Serving Cell3 (for Band VIII).
- 11. **[Phone1]** Execute **CHAN 9887** (or **DLCHAN 10837**) to set [UL Channel & Frequency] to [9887]CH and perform handover to X channel.
- 12. [Phone2] Execute DLCHAN 4700 to set [Second Cell UARFCN 3rd] to [4700]CH for Secondary Serving Cell3 (for Band VIII).
- 13. [Phone1] Execute RX measurement.

# 1.15.3. 6.2C Reference Sensitivity Level for Single band 4C-HSDPA

- 1. Execute ULGAINPAR 8,15,8,8,8 to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8].
- 2. Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. Execute CQIFEEDBACK 4 to set [CQI Feedback Cycle] to [4 ms].
- 4. Execute CHAN 9750 (or DLCHAN 10700) to set [UL Channel & Frequency] to [9750]CH Cell (M channel, for Band I).
- 5. Connect with Fixed Reference Channel H-Set1B (16QAM) (see 1.15.1 Connection and Disconnection with Single band 4C-HSDPA).
- 6. Execute **TPCPAT ALL1** to set [Power Control Bit Pattern] to [ALL 1].
- 7. Execute OLVL -102 to set [Output Level(Total)] to [-102] dBm (for Band I).
- 8. Execute **HSSCCHPWR -9.0** to set [HS-SCCH_Ec/Ior] to [-9.0] dB.
- 9. Execute HSPDSCHPWR -10.3 to set [HS-PDSCH_Ec/Ior] to [-10.3] dB.
- 10. Execute **TPUT_MEAS ON** to set [HSDPA Throughput measurement] to [On].
- 11. Execute **TPUT_SAMPLE 1000** to set [Number of Sample] at HSDPA Throughput to [1000] Block.
- 12. Execute **SWP** to perform HSDPA Throughput measurement.
- 13. Execute **TPUT_BLER?** to read the Block Error Rate measurement result of Serving Cell. Confirm the measurement result is lower than 0.1.
- 14. Execute **TPUT_S_BLER? 1** to read the Block Error Rate measurement result of Secondary Serving Cell1. Confirm the measurement result is lower than 0.1.
- 15. Execute **TPUT_S_BLER? 2** to read the Block Error Rate measurement result of Secondary Serving Cell2. Confirm the measurement result is lower than 0.1.

		Loop Mode	e 1		Phone-1
<fundamental measurem<="" th=""><th>ent&gt; Output Main</th><th>n</th><th></th><th></th><th>₩-CDMA</th></fundamental>	ent> Output Main	n			₩-CDMA
Parameter	Fundamental	UE F	Report		
End		UE Po	wer :	-10,2 dBm	Fundamental
HSDPA Throughput					
Throughput(Total)	633	288 kbps			A HSDPA
	Serving	g Seco	ondany Ser	ving	e mnoughput
	Cell	Cell 1	Cell 2	Cell 3	T
Throughput	210	96 21096	21096	kbps	S A CQI
Block Error Rate	0.00	00 0.0000	0.0000		
	0.1	00 0.00	0.00	%	
	0.00E+	00 0.00E+00	0.00E+00		
Error Count		0 0	0		
NACK		0 0	0		
DTX		0 0	0		
Transmitted/Sample		50 <mark> </mark>	50		
			1	50 Block	
Judgment	Pa	ss Pass	Pass		

# 1.15.4. 6.2D Reference Sensitivity Level for Dual band 4C-HSDPA

- 1. **[Phone1]** Execute **ULGAINPAR 8,15,8,8,8** to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to [8], [Delta CQI] to [8].
- 2. [Phone1] Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 3. [Phone1] Execute CQIFEEDBACK 4 to set [CQI Feedback Cycle] to [4 ms].
- 4. [Phone1] Execute CHAN 9750 (or DLCHAN 10700) to set [UL Channel & Frequency] to [9750]CH Cell (M channel, for Band I).
- 5. [Phone1] Execute S1_DLCHAN 10725 to set [Second Cell UARFCN 1st] to [10725]CH for Secondary Serving Cell1 (for Band I).
- 6. [Phone1] Execute S2_DLCHAN 10750 to set [Second Cell UARFCN 2nd] to [10750]CH for Secondary Serving Cell2 (for Band I).
- 7. [Phone1] Execute S3_DLCHAN 4625 to set [Second Cell UARFCN 3rd] to [4625]CH for Secondary Serving Cell3 (for Band VIII).
- 8. [Phone2] Execute DLCHAN 4625 to set [Second Cell UARFCN 3rd] to [4625]CH for Secondary Serving Cell3 (for Band VIII).
- 9. Connect with Fixed Reference Channel H-Set1C (16QAM) (see 1.15.2 Connection and Disconnection with Dual band 4C-HSDPA).
- 10. [Phone1] Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [ALL 1].
- 11. [Phone1] Execute OLVL -102 to set [Output Level(Total)] to [-102] dBm (for Band I).
- 12. [Phone2] Execute OLVL -99 to set [Output Level(Total)] to [-99] dBm (for Band VIII).
- 13. [Phone1-2] Execute HSSCCHPWR -9.0 to set [HS-SCCH_Ec/Ior] to [-9.0] dB.
- 14. [Phone1-2] Execute HSPDSCHPWR -10.3 to set [HS-PDSCH_Ec/Ior] to [-10.3] dB.
- 15. [Phone1] Execute TPUT_MEAS ON to set [HSDPA Throughput measurement] to [On].
- 16. **[Phone1]** Execute **TPUT_SAMPLE 1000** to set [Number of Sample] at HSDPA Throughput to [1000] Block.
- 17. **[Phone1]** Execute **SWP** to perform HSDPA Throughput measurement.
- 18. **[Phone1]** Execute **TPUT_BLER?** to read the Block Error Rate measurement result of Serving Cell. Confirm the measurement result is lower than 0.1.
- 19. **[Phone1]** Execute **TPUT_S_BLER? 1** to read the Block Error Rate measurement result of Secondary Serving Cell1. Confirm the measurement result is lower than 0.1.
- 20. **[Phone1]** Execute **TPUT_S_BLER? 2** to read the Block Error Rate measurement result of Secondary Serving Cell2. Confirm the measurement result is lower than 0.1.
- 21. **[Phone1]** Execute **TPUT_S_BLER? 3** to read the Block Error Rate measurement result of Secondary Serving Cell3. Confirm the measurement result is lower than 0.1.

	Phone-1				
(Fundamental Measurement> Outp	out Main				₩-CDMA
Parameter Fundam	iental	UE R	eport		
End		UE Po	wer :	-10.2 dBm	Fundamental
HSDPA Throughput					
Throughput(Total)	84384	4 kbps			A HSDPA
	Serving	Seco	ndany Serv	ving	<mark>e</mark> mroughput
	Cell	Cell 1	Cell 2	Cell 3	T
Throughput	21096	21096	21096	21096 kbps	A CUI
Block Error Rate	0.0000	0.0000	0.0000	0.0000	<u> </u>
	0.00	0.00	0.00	0.00 %	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	
Error Count	0	0	0	0	
NACK	0	0	0	0	
DTX	0	0	0	0	
Transmitted/Sample	50	50	50	50	
				50 Block	
Judgment	Pass	Pass	Pass	Pass	

## 1.15.5. 6.3G Maximum Input Level for 4C-HSDPA Reception (16QAM)

- 1. **[Phone1]** Execute **ULGAINPAR 8,15,8,8,8** to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to [8], [Delta CQI] to [8].
- 2. [Phone1] Execute TPCALGO 2 to set [Power Control Algorithm] to [Algorithm 2].
- 3. [Phone1] Execute CHAN 9750 (or DLCHAN 10700) to set [UL Channel & Frequency] to [9750]CH Cell (M channel, for Band I).
- 4. [Phone1] Execute S1_DLCHAN 10725 to set [Second Cell UARFCN 1st] to [10725]CH for Secondary Serving Cell1 (for Band I).
- 5. [Phone1] Execute S2_DLCHAN 10750 to set [Second Cell UARFCN 2nd] to [10750]CH for Secondary Serving Cell2 (for Band I).
- 6. [Phone1] Execute S3_DLCHAN 4625 to set [Second Cell UARFCN 3rd] to [4625]CH for Secondary Serving Cell3 (for Band VIII).
- 7. [Phone2] Execute DLCHAN 4625 to set [Second Cell UARFCN 3rd] to [4625]CH for Secondary Serving Cell3 (for Band VIII).
- 8. Connect with Fixed Reference Channel H-Set1C (16QAM) (see 1.15.2 Connection and Disconnection with Dual band 4C-HSDPA).
- 9. [Phone1] Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 10. [Phone1] Execute ILVL 20.0 to set [Input Level] to [+20.0] dBm.
- 11. Wait 100ms until UE power becomes +20.0 dBm.
- 12. [Phone1] Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 13. [Phone1-2] Execute OLVL -22.7 to set [Output Level(Total)] to [-22.7] dBm.
- 14. [Phone1-2] Execute DDPCHPWR -13.0 to set [DPCH_Ec/Ior] to [-13.0] dB.
- 15. **[Phone1-2]** Execute **HSSCCHPWR -13.0** to set [HS-SCCH_Ec/Ior] to [-13.0] dB.
- 16. [Phone1-2] Execute HSPDSCHPWR -3.0 to set [HS-PDSCH_Ec/Ior] to [-3.0] dB.
- 17. [Phone1] Execute TPUT_MEAS ON to set [HSDPA Throughput measurement] to [On].
- 18. [Phone1] Execute TPUT_SAMPLE 1000 to set [Number of Sample] at HSDPA Throughput to [1000] Block.
- 19. [Phone1] Execute TPUT_LIMIT 700 to set [Lower Limit] at HSDPA Throughput to [700] kbps.
- 20. [Phone1] Execute SWP to perform HSDPA Throughput measurement.
- 21. **[Phone1]** Execute **TPUTPASS?** to read the HSDPA Throughput measurement result of Serving Cell. Confirm the result is PASS.
- 22. [Phone1] Execute TPUTPASS_S? 1 to read HSDPA Throughput measurement result of Secondary Serving Cell1. Confirm the result is PASS.
- 23. [Phone1] Execute TPUTPASS_S? 2 to read HSDPA Throughput measurement result of Secondary Serving Cell2. Confirm the result is PASS.
- 24. **[Phone1]** Execute **TPUTPASS_S? 3** to read HSDPA Throughput measurement result of Secondary Serving Cell3. Confirm the result is PASS.

		Loop Mode	1			Phor	ne-1
<pre>KFundamental Measurement&gt; Output Main</pre> #-CDMA							
Parameter	Fundamental	UE R	eport				
End		UE Po	wer :	-10,2 (	1Bm	F	undamental
HSDPA Throughput							
Throughput(Total)	8438	4 kbps				A A	HSDPA
	Serving	Seco	ndany Serv	ving			nroughput
	Cell	Cell 1	Cell 2	Cell 3		IIT	
Throughput	21096	21096	21096	21096	kbps		CÚI
Block Error Rate	0.0000	0.0000	0.0000	0.0000			
	0.00	0.00	0.00	0.00	8		
	0.00E+00	0.00E+00	0.00E+00	0.00E+00			
Error Count	0	0	0	0			
NACK	0	0	0	0			
DTX	0	0	0	0			
Transmitted/Sample	50	50	50	50			
				50	Block		
Judgment	Pass	Pass	Pass	Pass			

## 1.15.6. 6.3GA Maximum Input Level for 4C-HSDPA Reception (16QAM) (3carrier)

- 1. Execute ULGAINPAR 8,15,8,8,8 to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to [8], [Delta NACK] to [8], [Delta CQI] to [8].
- 2. Execute **TPCALGO 2** to set [Power Control Algorithm] to [Algorithm 2].
- 3. Execute CHAN 9750 (or DLCHAN 10700) to set [UL Channel & Frequency] to [9750]CH Cell (M channel, for Band I).
- 4. Connect with Fixed Reference Channel H-Set1B (16QAM) (see 1.15.1 Connection and Disconnection with Single band 4C-HSDPA)
- 5. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 6. Execute ILVL 20.0 to set [Input Level] to [+20.0] dBm.
- 7. Wait 100ms until UE power becomes +20.0 dBm.
- 8. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 9. Execute OLVL -22.7 to set [Output Level(Total)] to [-22.7] dBm.
- 10. Execute DDPCHPWR -13.0 to set [DPCH_Ec/Ior] to [-13.0] dB.
- 11. Execute HSSCCHPWR -13.0 to set [HS-SCCH_Ec/Ior] to [-13.0] dB.
- 12. Execute HSPDSCHPWR -3.0 to set [HS-PDSCH_Ec/Ior] to [-3.0] dB.
- 13. Execute TPUT_MEAS ON to set [HSDPA Throughput measurement] to [On].
- 14. Execute **TPUT_SAMPLE 1000** to set [Number of Sample] at HSDPA Throughput to [1000] Block.
- 15. Execute **TPUT_LIMIT 700** to set [Lower Limit] at HSDPA Throughput to [700] kbps
- 16. Execute **SWP** to perform HSDPA Throughput measurement.
- 17. Execute **TPUTPASS?** to read the HSDPA Throughput measurement result of Serving Cell. Confirm the result is PASS.
- 18. Execute **TPUTPASS_S? 1** to read HSDPA Throughput measurement result of Secondary Serving Cell1. Confirm the result is PASS.
- 19. Execute **TPUTPASS_S? 2** to read HSDPA Throughput measurement result of Secondary Serving Cell2. Confirm the result is PASS.

		Loop Mode	1			Phone-1
<fundamental measurement=""> Out</fundamental>	put Main					₩-CDMA
Parameter Funda	mental	UE R	eport	1		
End		UE Pov	wer :	-10 <b>.</b> 2 a	1Bm	Fundamental
HSDPA Throughput						T T
Throughput(Total)	63288	kbps				A HSDPA
	Serving	Seco	ndany Serv	ving		<mark>e mroughputt</mark>
	Cell	Cell 1	Cell 2	Cell 3		
Throughput	21096	21096	21096		kbps	
Block Error Rate	0.0000	0.0000	0.0000			<b></b>
	0.00	0.00	0.00		8	
	0.00E+00	0.00E+00	0.00E+00			
Error Count	0	0	0			
NACK	0	0	0			
DTX	0	0	0			
Transmitted/Sample	50	50	50			
			1	50 E	Block	
Judgment	Pass	Pass	Pass			

## 1.15.7. 6.3H Maximum Input Level for 4C-HSDPA Reception (64QAM)

- 1. **[Phone1]** Execute **ULGAINPAR 8,15,8,8,8** to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to [8], [Delta CQI] to [8].
- 2. [Phone1] Execute TPCALGO 2 to set [Power Control Algorithm] to [Algorithm 2].
- 3. [Phone1] Execute CHAN 9750 (or DLCHAN 10700) to set [UL Channel & Frequency] to [9750]CH Cell (M channel, for Band I).
- 4. [Phone1] Execute S1_DLCHAN 10725 to set [Second Cell UARFCN 1st] to [10725]CH for Secondary Serving Cell1 (for Band I).
- 5. [Phone1] Execute S2_DLCHAN 10750 to set [Second Cell UARFCN 2nd] to [10750]CH for Secondary Serving Cell2 (for Band I).
- 6. [Phone1] Execute S3_DLCHAN 4625 to set [Second Cell UARFCN 3rd] to [4625]CH for Secondary Serving Cell3 (for Band VIII).
- 7. [Phone2] Execute DLCHAN 4625 to set [Second Cell UARFCN 3rd] to [4625]CH for Secondary Serving Cell3 (for Band VIII).
- 8. Connect with Fixed Reference Channel H-Set8C (64QAM). (see 1.15.2 Connection and Disconnection with Dual band 4C-HSDPA).
- 9. [Phone1] Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 10. [Phone1] Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 11. Wait 100ms until UE power becomes 0.0 dBm.
- 12. [Phone1] Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 13. [Phone1-2] Execute OLVL -22.7 to set [Output Level(Total)] to [-22.7] dBm.
- 14. [Phone1-2] Execute DDPCHPWR -13.0 to set [DPCH_Ec/Ior] to [-13.0] dB.
- 15. **[Phone1-2]** Execute **HSSCCHPWR -13.0** to set [HS-SCCH_Ec/Ior] to [-13.0] dB.
- 16. [Phone1-2] Execute HSPDSCHPWR -2.0 to set [HS-PDSCH_Ec/Ior] to [-2.0] dB.
- 17. [Phone1] Execute TPUT_MEAS ON to set [HSDPA Throughput measurement] to [On].
- 18. [Phone1] Execute TPUT_SAMPLE 1000 to set [Number of Sample] at HSDPA Throughput to [1000] Block.
- 19. [Phone1] Execute TPUT_LIMIT 11800 to set set [Lower Limit] at HSDPA Throughput to [11800] kbps.
- 20. [Phone1] Execute SWP to perform HSDPA Throughput measurement.
- 21. **[Phone1]** Execute **TPUTPASS?** to read the HSDPA Throughput measurement result of Serving Cell. Confirm the result is PASS.
- 22. **[Phone1]** Execute **TPUTPASS_S? 1** to read HSDPA Throughput measurement result of Secondary Serving Cell1. Confirm the result is PASS.
- 23. [Phone1] Execute TPUTPASS_S? 2 to read HSDPA Throughput measurement result of Secondary Serving Cell2. Confirm the result is PASS.
- 24. **[Phone1]** Execute **TPUTPASS_S? 3** to read HSDPA Throughput measurement result of Secondary Serving Cell3. Confirm the result is PASS.

		Loop Mode	1			Phone-1
<fundamental measurement=""></fundamental>	Output Main					₩-CDMA
Parameter F	iundamental 👘	UE R	eport			
End		UE Po	wer :	-10,2 (	1Bm	Fundamental
HSDPA Throughput						Т
Throughput(Total)	84384	4 kbps				A HSDPA
	Serving	Seco	indany Seri	ving		
	Cell	Cell 1	Cell 2	Cell 3		I COT
Throughput	21096	21096	21096	21096	kbps	A CUI
Block Error Rate	0.0000	0.0000	0.0000	0.0000		<u> </u>
	0.00	0.00	0.00	0.00	8	
	0.00E+00	0.00E+00	0.00E+00	0.00E+00		
Error Count	0	0	0	0		
NACK	0	0	0	0		
DTX	0	0	0	0		
Transmitted/Sample	50	50	50	50		
			1	50	Block	
Judgment	Pass	Pass	Pass	Pass		

## 1.15.8. 6.3HA Maximum Input Level for 4C-HSDPA Reception (64QAM) (3carrier)

- 1. Execute ULGAINPAR 8,15,8,8,8 to set [Beta C] to [8], [Beta D] to [15], [Delta ACK] to 8, [Delta NACK] to [8], [Delta CQI] to [8].
- 2. Execute **TPCALGO 2** to set [Power Control Algorithm] to [Algorithm 2].
- 3. Execute CHAN 9750 (or DLCHAN 10700) to set [UL Channel & Frequency] to [9750]CH (M channel, for Band I).
- 4. Connect with Fixed Reference Channel H-Set1B(16QAM) (see 1.15.1 Connection and Disconnection with Single band 4C-HSDPA).
- 5. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 6. Execute **ILVL 0.0** to set [Input Level] to [0.0] dBm.
- 7. Wait 100ms until UE power becomes 0.0 dBm.
- 8. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 9. Execute **OLVL -22.7** to set [Output Level(Total)] to [-22.7] dBm.
- 10. Execute DDPCHPWR -13.0 to set [DPCH_Ec/Ior] to [-13.0] dB.
- 11. Execute **HSSCCHPWR -13.0** to set [HS-SCCH_Ec/Ior] to [-13.0] dB.
- 12. Execute HSPDSCHPWR -2.0 to set [HS-PDSCH_Ec/Ior] to [-2.0] dB.
- 13. Execute TPUT_MEAS ON to set [HSDPA Throughput measurement] to [On].
- 14. Execute **TPUT_SAMPLE 1000** to set [Number of Sample] at HSDPA Throughput to [1000] Block.
- 15. Execute **TPUT_LIMIT 11800** to set set [Lower Limit] at HSDPA Throughput to [11800] kbps.
- 16. Execute **SWP** to perform HSDPA Throughput measurement.
- 17. Execute **TPUTPASS?** to read the HSDPA Throughput measurement result of Serving Cell. Confirm the result is PASS.
- 18. Execute **TPUTPASS_S? 1** to read HSDPA Throughput measurement result of Secondary Serving Cell1. Confirm the result is PASS.
- 19. Execute **TPUTPASS_S? 2** to read HSDPA Throughput measurement result of Secondary Serving Cell2. Confirm the result is PASS.

		Loop Mode	1		F	^p hone-1
<fundamental measurement=""> Out</fundamental>	put Main				ł	#-CDMA
Parameter Funda	mental	UE R	eport			
End		UE Pou	wer :	-10,2 dB	'n	Fundamental
HSDPA Throughput						Т
Throughput(Total)	63288	kbps				A HSDPA
	Serving	Seco	ndany Serv	ving		e Throughput
	Cell	Cell 1	Cell 2	Cell 3		T COT
Throughput	21096	21096	21096	k	bps	e CQI
Block Error Rate	0.0000	0,0000	0,0000			-
	0.00	0.00	0.00	8		
	0.00E+00	0.00E+00	0.00E+00			
Error Count	Ō	Ō	Ō			
NÁCK	Ō	0	Ō			
DTX	0	0	0			
Transmitted/Sample	50	50	<u>50</u>			
			/	50 BI	ock	
Judgment	Pass	Pass	Pass			

# 1.16. DC-HSUPA Measurement

*This chapter describes measurements when Phone1 and Phone 2 are used as Serving Cell and Secondary Serving Cell, respectively for DC-HSUPA connection.

## 1.16.1. Synchronization of Frame Timing between 2 cells

Synchronizing frame timing between 2 cells is required when connecting with DC-HSDPA.

- 1. [Phone1] Execute ENTERSYNC IN_SLAVE to be slave condition of frame timing synchronization.
- 2. [Phone2] Execute ENTERSYNC MASTER to perform frame timing synchronization.
- 3. [Phone1] Execute ENTERSYNC? to check response becomes 1 (synchronized).

#### 1.16.2. Location Registration for DC-HSUPA

Location registration with Combined is required when connecting with DC-HSUPA.

- 1. [Phone1-2] Execute PRESET_3GPP to preset parameters for 3GPP.
- 2. [Phone1] Execute CHCODING EDCHTEST_DC to set [Channel Coding] to [E-DCH RF Test for DC-HSUPA].
- 3. [Phone1] Execute INTEGRITY ON to set [Integrity Protection] to [On].
- 4. [Phone1] Execute REGMODE COMBINED to set [Registration Mode] to [Combined].
- 5. [Phone2] Execute CHCODING EDCHTEST_DC to set [Channel Coding] to [EDCH RF Test for DC-HSUPA].
- 6. [Phone2] Execute LVL OFF to set [Output Level Total)] to [Off] for Secondary Serving Cell.
- 7. [Phone2] Execute CALLPROC OFF to set [Call Processing] of Secondary Serving Cell to [Off] to output each channel.
- 8. Turn on the UE power.
- 9. [Phone1] Execute CALLSTAT? and wait until the response becomes 2 (= Idle (Regist)).

## 1.16.3. Connection with DC-HSUPA(QPSK)

The process after location registration is shown below. (see 1.15.2 Location Registration for DC-HSUPA.)

- 1. [Phone1] Execute DCHSUSET TTI2_QPSK to set [DC-HSUPA Set of Parameters] to [TTI 2ms(QPSK)].
- 2. [Phone1] Execute S_DLCHAN 10725 to set [Second Cell UARFCN] to [10725]CH for Secondary Serving Cell (when the DL channel of Serving Cell is 10700).
- 3. [Phone1] Execute DPCCHPWROFS -80 to set DPCCH Power Offset Level to [-80] dB.
- 4. [Phone1] Execute DELTA_ACK 0 to set [Delta ACK] to [0].
- 5. [Phone1] Execute DELTA_NACK 0 to set [Delta NACK] to [0].
- 6. [Phone1] Execute DELTA_CQI 0 to set [Delta CQI] to [0].
- 7. [Phone1] Execute DELTA_EC 0 to set [Delta E-DPCCH] to [0].
- 8. [Phone1] Execute MINSET_ETFCI 67 to set [E-DCH minimum set of E-TFCI] to [67].
- 9. [Phone1] Execute ALLREFETFCI 2,1,12,68,19 to set [Number of E-TFCIs] to [2], [Reference E-TFCI] to [1,68], [Reference E-TFCI PO] to [12,19].
- 10. [Phone1] Execute CALLSA to connect with DC-HSDPA+DC-HSUPA.
- 11. **[Phone1]** Execute **CALLSTAT?** and wait until the response becomes 7 (=Test Loop Mode).
- 12. [Phone2] Execute DCHSUSET TTI2_QPSK to set [DC-HSUPA Set of Parameters] to [TTI 2ms(QPSK)].
- 13. [Phone2] Execute DCHSUCELL SEC to set [DC-HSUPA Set of Parameters-Serving Cell Type] to [Secondary].
- 14. [Phone2] Execute DLCHAN 10725 to set [DL Channel & Frequency] to [10725]CH for Secondary Serving Cell.
- 15. [Phone2] Execute EAGCHCODE 10 to set [E-AGCH Channelization Code] to [10].
- 16. [Phone2] Execute EHICHCODE 4 to set [E-HICH Channelization Code] to [4].
- 17. [Phone2] Execute LVL ON to set [Output Level(Total)] to [On] for Secondary Serving Cell.

# 1.16.4. Connection with DC-HSUPA(16QAM)

The process after location registration is shown below. (See 1.15.2 Location Registration for DC-HSUPA.)

- 1. [Phone1] Execute DCHSUSET TTI2_16QAM to set [DC-HSUPA Set of Parameters] to [TTI 2ms(16QAM)].
- 2. [Phone1] Execute S_DLCHAN 10725 to set [Second Cell UARFCN] to [10725]CH for Secondary Serving Cell (when the DL channel of Serving Cell is 10700).
- 3. [Phone1] Execute DPCCHPWROFS -80 to set DPCCH Power Offset Level to [-80] dB.
- 4. [Phone1] Execute DELTA_ACK 6 to set [Delta ACK] to [6].
- 5. [Phone1] Execute DELTA_NACK 6 to set [Delta NACK] to [6].
- 6. [Phone1] Execute DELTA_CQI 6to set [Delta CQI] to [6].
- 7. [Phone1] Execute DELTA_EC 0 to set [Delta E-DPCCH] to [0].
- 8. [Phone1] Execute MINSET_ETFCI 67 to set [E-DCH minimum set of E-TFCI] to [67].
- 9. [Phone1] Execute ALLREFETFCI 2,1,12,68,19 to set [Number of E-TFCIs] to [2], [Reference E-TFCI] to [1,68], [Reference E-TFCI PO] to [12,19].
- 10. [Phone1] Execute CALLSA to connect with DC-HSDPA+DC-HSUPA.
- 11. [Phone1] Execute CALLSTAT? and wait until the response becomes 7 (=Test Loop Mode).
- 12. [Phone2] Execute DCHSUSET TTI2_16QAM to set [DC-HSUPA Set of Parameters] to [TTI 2ms(16QAM)].
- 13. [Phone2] Execute DCHSUCELL SEC to set [DC-HSUPA Set of Parameters-Serving Cell Type] to [Secondary].
- 14. [Phone2] Execute DLCHAN 10725 to set [DL Channel & Frequency] to [10725]CH for Secondary Serving Cell.
- 15. [Phone2] Execute EAGCHCODE 10 to set [E-AGCH Channelization Code] to [10].
- 16. [Phone2] Execute EHICHCODE 4 to set [E-HICH Channelization Code] to [4].
- 17. [Phone2] Execute LVL ON to set [Output Level(Total)] to [On] for Secondary Serving Cell.

#### 1.16.5. Disconnection with DC-HSUPA

- 1. [Phone2] Execute HSSCCH OFF to set [HSSCCH power] to [Off] for Secondary Serving Cell.
- 2. [Phone1] Execute CALLSO to disconnect with DC-HSUPA (by pressing "End Call" key).
- 3. [Phone1] Execute CALLSTAT? and wait until the response becomes 2 (=Idle(Regist)).

#### 1.16.6. Channel Switching using Handover

Usually, measurement is performed at three frequency points (L, M, H). In this case, the Channel can be switched quickly without reconnection by switching it at handover with a higher output level and Beta C for UL DPCCH. When a GPIB command is sent during handover, it waits until handover ends.

- 1. [Phone2] Execute HSSCCH OFF to set [HSSCCH power] to [Off] for Secondary Serving Cell.
- 2. [Phone1] Execute RX measurement with M channel.
- 3. [Phone1] Execute S_DLCHAN 10588 to set [Second Cell UARFCN] to [10588]CH for Secondary Serving Cell.
- 4. [Phone1] Execute CHAN 9613 (or DLCHAN 10563) to set [UL Channel & Frequency] to [9613]CH and perform handover to L channel.
- 5. [Phone2] Execute DLCHAN 10588 to set [DL Channel & Frequency] to [10588]CH for Secondary Serving Cell.
- 6. [Phone1] Execute RX measurement.
- 7. [Phone1] Execute S_DLCHAN 10812 to set [Second Cell UARFCN] to [10812]CH for Secondary Serving Cell.
- 8. [Phone1] Execute CHAN 9887 (or DLCHAN 10837) to set [UL Channel & Frequency] to [9887]CH and perform handover to handover to H channel.
- 9. [Phone2] Execute DLCHAN 10812 to set [DL Channel & Frequency] to [10812]CH for Secondary Serving Cell.
- 10. [Phone2] Execute HSSCCH ON to set [HSSCCH power] to [On] for Secondary Serving Cell.
- 11. [Phone1] Execute RX measurement.

## 1.16.7. Measurement Item Selection

For DC-HSUPA Measurement, Phone1 and Phone 2 are used as Serving Cell and Secondary Serving Cell, respectively for DC-HSUPA connection. Phone1 and 2 have different measurement methods as follows. (These differences depend on the parameter setting of "DC-HSUPA Set of Parameters – Serving Cell Type".)

Fundamental	DC-HSUPA Set of Parameters - Serving Cell Type				
Measurement Items	Primary Cell(Phone1)	Secondary Cell(Phone2)			
Power Measurement	Primary&Secondary	Secondary(*2)			
Frequency Error	Primary	Secondary			
Occupied Bandwidth(*1)	Primary&Secondary	-			
Spectrum Emission Mask(*1)	Primary&Secondary	-			
Adjacent Channel Power(*1)	Primary&Secondary	-			
Modulation Analysis	Primary	Secondary			
Peak Code Domain Error	Primary	Secondary			
Relative Code Domain Error	Primary	Secondary			
Bit Error Rate	-	-			
Block Error Rate	-	-			
HSDPA Throughput	Primary&Secondary	-			
CQI	Primary&Secondary	-			
HSUPA Throughput	Primary	Secondary			

MT8820C Fundamental	Measurement s	necification table o	f "F-DCH RF Test f	or DC-HSDUPA"
Whoozoc Fundamental	measurement s	pecification table 0		

"Primary": MT8820C measures UE as Serving Cell.

"Secondary": MT8820C measures UE as Secondary Serving Cell .

"Primary+Secondary": MT8820C measures UE as Serving Cell/Secondary Serving Cell at the same time. "-": Measurement result is not valid.

(*1) To measure these items, other items should be turned off.

For example, Power Measurement and Spectrum Emission Mask cannot be measured at the same time. (*2) Measurement results are displayed on the Primary results area.

The MT8820/15B is set for W-CDMA measurement at preset.

Since DC-HSUPA Throughput measurement items are set to off, turn on these items to measure (**TPUTU_MEAS ON**). Although BER measurement and BLER measurement are unnecessary items, turn off these items to cut the measurement time (**BER_MEAS OFF**, **BLER_MEAS OFF**).

## 1.16.8. 5.2BA UE Maximum Output Power for DC-HSUPA(QPSK)

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute PWR_MEAS ON to set [Power measurement] to [On].
- 10. [Phone1]Execute PWR_AVG 20 to set [Average Count] of Power measurement to [20] times.
- 11. **[Phone1]**Execute **EHICHPAT ACK** to set [E-HICH Pattern] to [ACK].
- 12. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 13. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 14. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 15. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 16. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 17. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 18. [Phone1]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 19. [Phone2]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 20. Wait 150ms until the UE power becomes 10.0 dBm.
- 21. [Phone1]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 22. [Phone2]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 23. [Phone1]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 24. [Phone2]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 25. Wait 150ms until the UE power reaches Maximum Power.
- 26. [Phone1]Execute SWP to perform Power measurement.
- 27. [Phone1]Execute AVG_POWER? to read the Power measurement result as Power1.
- 28. **[Phone1]**Execute **AVG_POWER_S?** to read the Power measurement result as Power2.

Confirm the measurement result (above Power1+Power2) is +22.5 dBm (Tolerance +3.2/–4.7) To measure Power, OBW,SEM and ACLR measurement items should be turned off.

## 1.16.9. 5.2BB UE Maximum Output Power for DC-HSUPA(16QAM)

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(16QAM).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute PWR_MEAS ON to set [Power measurement] to [On].
- 10. [Phone1]Execute PWR_AVG 20 to set [Average Count] of Power measurement to [20] times.
- 11. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 12. [Phone1]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [24].
- 13. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 14. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 15. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 16. [Phone2]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [24].
- 17. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 18. [Phone1]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 19. [Phone2]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 20. Wait 150ms until the UE power becomes 10.0 dBm.
- 21. [Phone1]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 22. [Phone2]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 23. [Phone1]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].

- 24. [Phone2]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 25. Wait 150ms until the UE power reaches Maximum Power.
- 26. [Phone1]Execute SWP to perform Power measurement.
- 27. **[Phone1]**Execute **AVG_POWER?** to read the Power measurement result as Power1.
- 28. **[Phone1]**Execute **AVG_POWER_S?** to read the Power measurement result as Power2. Confirm the measurement result (above Power1+Power2) is +22.5 dBm (Tolerance +3.2/-4.7)

To measure Power, OBW, SEM and ACLR measurement items should be turned off.

## 1.16.10. 5.2DA UE Relative Code Domain Power Accuracy for DC-HSUPA with QPSK

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 2 to set [TPC Algorithm] to [2].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute TPUTU_MEAS ON to set [HSUPA Throughput] measurement to [On].
- 10. [Phone1]Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].
- 11. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 12. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 13. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 14. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 15. [Phone2]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 16. [Phone2]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 17. [Phone2]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 18. [Phone2]Execute PWR_MEAS ON to set [Power measurement] to [On].
- 19. [Phone2]Execute PWR_AVG 20 to set [Average Count] of Power measurement to [20] times.
- 20. [Phone2]Execute TPUTU_MEAS ON to set [HSUPA Throughput] measurement to [On].
- 21. [Phone2]Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].
- 22. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 23. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 24. [Phone1]Execute SCRSEL FMEAS to display the Fundamental Measurement screen.
- 25. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 26. [Phone2]Execute SCRSEL FMEAS to display the Fundamental Measurement screen.
- 27. [Phone2]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 28. [Phone1]Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 29. [Phone2]Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 30. Wait 150ms until the UE power becomes 15.0 dBm.
- 31. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 32. [Phone1]Execute SWP to perform HSUPA Throughput measurement.
- 33. [Phone1]Execute AVG_ETFCI? to read the E-TFCI measurement result, and confirm it is 1.
- 34. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 35. [Phone2]Execute SWP to perform HSUPA Throughput measurement.
- 36. [Phone2]Execute AVG_ETFCI? to read the E-TFCI measurement result, and confirm it is <u>1</u>.
- 37. **[Phone1]**Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 38. [Phone1]Execute MEASOBJ HSDPCCH_MA to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 39. [Phone1]Execute HSMA_ITEM CDP to set measurement result of HS-DPCCH (Modulation Analysis) to [CDP Ratio].
- 40. [Phone1]Execute SWP to perform CDP Ratio measurement.
- 41. [Phone1]Confirm the measurement results of Relative Code Domain Power are as follows.
  - DPCCH -5.8dB(Accuracy +/-1.7), HS-DPCCH -15.3(Accuracy +/-2.9),
    - E-DPCCH -15.3(Accuracy +/-2.9), E-DPDCH -1.7(Accuracy +/-1.7)
- 42. [Phone2]Execute SCRSEL TDMEAS to display the Time Domain Measurement screen.
- 43. [Phone2]Execute MEASOBJ HSDPCCH_MA to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- [Phone2]Execute HSMA_ITEM CDP to set measurement result of HS-DPCCH (Modulation Analysis) to [CDP Ratio].

- 45. [Phone2]Execute SWP to perform CDP Ratio measurement.
- 46. [Phone2]Confirm the measurement results of Relative Code Domain Power are as follows.

DPCCH -5.6dB(Accuracy +/-1.7),

E-DPCCH -15.2(Accuracy +/-2.9), E-DPDCH -1.6(Accuracy +/-1.7)

To measure Power/ HSUPA Throughput, OBW,SEM and ACLR measurement items should be turned off.

#### 1.16.11. 5.2EA UE Relative Code Domain Power Accuracy for DC-HSUPA with 16QAM

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 2 to set [TPC Algorithm] to [2].
- 4. [Phone1]Connect with DC-HSUPA(16QAM).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute TPUTU_MEAS ON to set [HSUPA Throughput] measurement to [On].
- 10. [Phone1]Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].
- 11. **[Phone1]**Execute **EHICHPAT ACK** to set [E-HICH Pattern] to [ACK].
- 12. [Phone1]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [24].
- 13. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 14. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 15. **[Phone2]**Execute **OBW_MEAS OFF** to set [Occupied Bandwidth measurement] to [Off].
- 16. [Phone2]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 17. [Phone2]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 18. [Phone2]Execute PWR_MEAS ON to set [Power measurement] to [On].
- 19. [Phone2]Execute PWR_AVG 20 to set [Average Count] of Power measurement to [20] times.
- 20. [Phone2]Execute TPUTU_MEAS ON to set [HSUPA Throughput] measurement to [On].
- 21. [Phone2]Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].
- 22. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 23. [Phone2]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [24].
- 24. [Phone1]Execute SCRSEL FMEAS to display the Fundamental Measurement screen.
- 25. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 26. [Phone2]Execute SCRSEL FMEAS to display the Fundamental Measurement screen.
- 27. [Phone2]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 28. [Phone1]Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 29. [Phone2]Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 30. Wait 150ms until the UE power becomes 15.0 dBm.
- 31. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 32. [Phone1]Execute SWP to perform HSUPA Throughput measurement.
- 33. [Phone1]Execute AVG_ETFCI? to read the E-TFCI measurement result, and confirm it is <u>1</u>.
- 34. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 35. [Phone2]Execute SWP to perform HSUPA Throughput measurement.
- 36. [Phone2]Execute AVG_ETFCI? to read the E-TFCI measurement result, and confirm it is 1.
- 37. **[Phone1]**Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 38. [Phone1]Execute MEASOBJ HSDPCCH_MA to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 39. [Phone1]Execute HSMA_ITEM CDP to set measurement result of HS-DPCCH (Modulation Analysis) to [CDP Ratio].
- 40. [Phone1]Execute SWP to perform CDP Ratio measurement.
- 41. [Phone1]Confirm the measurement results of Relative Code Domain Power are as follows.
  - DPCCH -24.0dB(Accuracy +/-3.5), HS-DPCCH -21.9(Accuracy +/-3.5),
    - E-DPCCH -15.9(Accuracy +/-2.9),
    - E-DPDCH1/E-DPDCH2 -4.9(Accuracy +/-1.7),
    - E-DPCCH3/E-DPDCH4 -7.9(Accuracy +/-1.7),
- 42. **[Phone2]**Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 43. [Phone2]Execute MEASOBJ HSDPCCH_MA to set [Measurement Object] to [HS-DPCCH Modulation Analysis].
- 44. [Phone2]Execute HSMA_ITEM CDP to set measurement result of HS-DPCCH (Modulation Analysis) to [CDP

Ratio].

- 45. [Phone2]Execute SWP to perform CDP Ratio measurement.
- 46. [Phone2]Confirm the measurement results of Relative Code Domain Power are as follows. DPCCH -23.9dB(Accuracy +/-3.5), E-DPCCH -15.9(Accuracy +/-2.9), E-DPDCH1/E-DPDCH2 -4.9(Accuracy +/-1.7), E-DPCCH3/E-DPDCH4 -7.9(Accuracy +/-1.7),

To measure Power/ HSUPA Throughput, OBW,SEM and ACLR measurement items should be turned off.

# 1.16.12. 5.3A Frequency Error for DC-HSUPA

To connect with DC-HSUPA(QPSK), See 2.3.1 Connection with DC-HSUPA(QPSK).

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -102.7 to set [Output Level] to [-102.7dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute FREQ_MEAS ON to set [Frequency measurement] to [On].
- 10. [Phone1]Execute FREQ_AVG 20 to set [Average Count] of Frequency measurement to [20] times.
- 11. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 12. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 13. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 14. [Phone2]Execute OLVL -102.7 to set [Output Level] to [-102.7dBm].
- 15. [Phone2]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 16. [Phone2]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 17. [Phone2]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 18. [Phone2]Execute FREQ_MEAS ON to set [Frequency measurement] to [On].
- 19. [Phone2]Execute FREQ_AVG 20 to set [Average Count] of Frequency measurement to [20] times.
- 20. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 21. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 22. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 23. [Phone1]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 24. [Phone2]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 25. Wait 150 ms until the UE power becomes 10.0 dBm.
- 26. [Phone1]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 27. [Phone2]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 28. [Phone1]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 29. [Phone2]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 30. Wait 150 ms until the UE power reaches Maximum Power.
- 31. [Phone1]Execute SWP to perform Frequency measurement.
- 32. [Phone2]Execute SWP to perform Frequency measurement.
- 33. [Phone1]Execute MAX_CARRFERR? PPM to read the Frequency Error measurement result.
- 34. [Phone1]Execute MIN_CARRFERR? PPM to read the Frequency Error measurement result.
- 35. [Phone1]Confirm the measurement result is lower than (0.1 ppm + 10 Hz).
- 36. [Phone2]Execute MAX_CARRFERR? PPM to read the Frequency Error measurement result.
- 37. [Phone2]Execute MIN_CARRFERR? PPM to read the Frequency Error measurement result.
- 38. [Phone2]Confirm the measurement result is lower than (0.1 ppm + 10 Hz).

To measure Frequency Error, OBW,SEM and ACLR measurement items should be turned off.

# 1.16.13. 5.4.1A Open Loop Power Control in the Uplink for DC-HSUPA

The following measurement uses Open Loop Power Control measurement on the Time Domain Measurement screen.

The process after location registration is shown below. (see 1.16.2 Location Registration for DC-HSUPA.)

- 1. [Phone1]Execute SCRSEL TDMEAS to display the Time Domain Measurement screen.
- 2. [Phone1]Execute MEASOBJ DCHSUPA_OLPC to set [Measurement Object] to [DC-HSUPA Open Loop Power Control].
- 3. [Phone1]Execute TDM_RRC OFF to set to [RRC Filter] to [Off].
- 4. [Phone2]Execute SCRSEL TDMEAS to display the Time Domain Measurement screen.
- 5. [Phone2]Execute MEASOBJ DCHSUPA_OLPC to set [Measurement Object] to [DC-HSUPA Open Loop Power Control].
- 6. [Phone2]Execute TDM_RRC OFF to set to [RRC Filter] to [Off].
- 7. [Phone2]Execute TIMEOUT 15 to set [Timeout Length ] to [15] s.
- 8. [Phone1]Execute MAXULPWR 24 to set [Maximum Allowed UL TX Power] to [24.0] dBm.

Maximum Allowed TX Power is a standard parameter of Cell Selection and Reselection. Power Class must be set lower than Maximum Allowed TX Power, so the UE can perform Cell Selection and Reselection with Sensitivity Level. For example, when UE Power Class is 3, MAXULPWR is 24.0.

#### 1.16.14. 5.4.1A Open Loop Power Control in the Uplink for DC-HSUPA (RX-middle)

- 1. [Phone1]Execute OLVL -65.7 to set [Output Level] to [-65.7] dBm.
- 2. [Phone1]Execute CPICHPWR -3.9 to set [Downlink CPICH] to [-3.9] dB.
- 3. [Phone1]Execute HSPDSCHPWR -6.5 to set [HS-PDSCH_Ec/Ior] to [-6.5] dB.
- 4. [Phone1]Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 5. [Phone1]Execute DPCCHPWROFS -84 to set [DPCCH Power Offset] to [-84] dB.
- 6. [Phone2]Execute OLVL -65.7 to set [Output Level] to [-65.7] dBm.
- 7. [Phone2]Execute CPICHPWR -3.9 to set [Downlink CPICH] to [-3.9] dB.
- 8. [Phone2]Execute HSPDSCHPWR -6.5 to set [HS-PDSCH_Ec/Ior] to [-6.5] dB.
- 9. [Phone2]Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 10. [Phone2]Execute LVL ON to set [Output Level(Total)] to [On] for Secondary Serving Cell.
- 11. **[Phone2]**Execute **SWP** to perform measurement.
- 12. [Phone1]Execute SWPANDPG to connect with DC-HSUPA(QPSK) and to perform measurement.
- 13. [Phone1]Execute MKRL_TDM? to read the measurement result.
- 14. **[Phone2]**Execute **MKRL_TDM?** to read the measurement result.
- 15. [Phone1]Confirm the measurement result is -14.4 dBm (±10 dB).
- 16. **[Phone2]**Confirm the measurement result is –14.4 dBm (±10 dB).
- 17. [Phone2]Execute LVL OFF to set [Output Level(Total)] to [Off] for Secondary Serving Cell.
- 18. Disconnection with DC-HSUPA.

## 1.16.15. 5.4.1A Open Loop Power Control in the Uplink for DC-HSUPA (RX Upper dynamic

#### end)

- 1. [Phone1]Execute OLVL -25.0 to set [Output Level] to [-25.0] dBm.
- 2. [Phone1]Execute CPICHPWR -3.9 to set [Downlink CPICH] to [-3.9] dB.
- 3. [Phone1]Execute HSPDSCHPWR -6.5 to set [HS-PDSCH_Ec/Ior] to [-6.5] dB.
- 4. [Phone1]Execute ILVL -25.0 to set [Input Level] to [-25.0] dBm.
- 5. [Phone1]Execute DPCCHPWROFS -66 to set [DPCCH Power Offset] to [-66] dB.
- 6. [Phone2]Execute OLVL -25.0 to set [Output Level] to [-25.0] dBm.
- 7. [Phone2]Execute CPICHPWR -3.9 to set [Downlink CPICH] to [-3.9] dB.
- 8. [Phone2]Execute HSPDSCHPWR -6.5 to set [HS-PDSCH_Ec/Ior] to [-6.5] dB.
- 9. [Phone2]Execute ILVL -25.0 to set [Input Level] to [-25.0] dBm.
- 10. [Phone2]Execute LVL ON to set [Output Level(Total)] to [On] for Secondary Serving Cell.
- 11. [Phone2]Execute SWP to perform measurement.
- 12. [Phone1]Execute SWPANDPG to connect with DC-HSUPA(QPSK) and to perform measurement.

- 13. [Phone1]Execute MKRL_TDM? to read the measurement result.
- 14. **[Phone2]**Execute **MKRL_TDM?** to read the measurement result.
- 15. **[Phone1]**Confirm the measurement result is –37.1 dBm (±10 dB).
- 16. [Phone2]Confirm the measurement result is –37.1 dBm (±10 dB).
- 17. [Phone2]Execute LVL OFF to set [Output Level(Total)] to [Off] for Secondary Serving Cell.
- 18. Disconnection with DC-HSUPA.

# 1.16.16. 5.4.1A Open Loop Power Control in the Uplink for DC-HSUPA (RX-Sensitivity

level)

- 1. [Phone1]Execute OLVL -106.0 to set [Output Level] to [-106.0] dBm for Band I. For other Bands, refer to Table 6.2.2 below.
- 2. [Phone1]Execute CPICHPWR -3.9 to set [Downlink CPICH] to [-3.9] dB.
- 3. [Phone1]Execute HSPDSCHPWR -6.5 to set [HS-PDSCH_Ec/Ior] to [-6.5] dB.
- 4. [Phone1]Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- [Phone1]Execute DPCCHPWROFS -108 to set [DPCCH Power Offset] to [-108] dB for Band I, IV, VI, IX, X, XI, XIX, XXI. Or execute DPCCHPWROFS -108 to set [DPCCH Power Offset] to [-106] dB for Band II, III, V, VII, VIII, XII, XIII, XIV, XX, XXI.
- 6. [Phone2]Execute OLVL -106.0 to set [Output Level] to [-106.0] dBm.
- 7. [Phone2]Execute CPICHPWR -3.9 to set [Downlink CPICH] to [-3.9] dB.
- 8. [Phone2]Execute HSPDSCHPWR -6.5 to set [HS-PDSCH_Ec/Ior] to [-6.5] dB.
- 9. [Phone2]Execute ILVL 25.0 to set [Input Level] to [25.0] dBm.
- 10. [Phone2]Execute LVL ON to set [Output Level(Total)] to [On] for Secondary Serving Cell.
- 11. [Phone2]Execute SWP to perform measurement.
- 12. [Phone1]Execute SWPANDPG to connect with DC-HSUPA(QPSK) and to perform measurement.
- 13. [Phone1]Execute MKRL_TDM? to read the measurement result.
- 14. [Phone2]Execute MKRL_TDM? to read the measurement result.
- 15. **[Phone1]**Confirm the measurement result is +8.7 dBm (±10 dB) for Band I, II, IV, V, VI, VII, X, XI, XIX, XXI, or +7.7 dBm(±10 dB) for Band III, VIII, IX, XII, XIV, XX, XXII.
- 16. **[Phone2]** Confirm the measurement result is +8.7 dBm (±10 dB) for Band I, II, IV, V, VI, VII, X, XI, XIX, XXI, or +7.7 dBm(±10 dB) for Band III, VIII, IX, XII, XIV, XX, XXII.
- 17. [Phone2]Execute LVL OFF to set [Output Level(Total)] to [Off] for Secondary Serving Cell.
- 18. Disconnection with DC-HSUPA.

Operating Band	Unit	Unit DPCH_Ec <refsens></refsens>			
Ι	dBm/3.84 MHz	-116.3	-106		
II	dBm/3.84 MHz	-114.3	-104		
III	dBm/3.84 MHz	-113.3	-103		
IV	dBm/3.84 MHz	-116.3	-106		
V	dBm/3.84 MHz	-114.3	-104		
VI	dBm/3.84 MHz	-116.3	-106		
VII	dBm/3.84 MHz	-114.3	-104		
VIII	dBm/3.84 MHz	-113.3	-103		
IX	dBm/3.84 MHz	-115.3	-105		
Х	dBm/3.84 MHz	-116.3	-106		
XI	dBm/3.84 MHz	-116.3	-106		
XII	dBm/3.84 MHz	-113.3	-103		
XIII	dBm/3.84 MHz	-113.3	-103		
XIV dBm/3.84 MHz		-113.3	-103		
XIX	XIX dBm/3.84 MHz -116.3		-106		
XX	XX dBm/3.84 MHz -113.3		-103		
XXI	dBm/3.84 MHz	-116.3	-106		
XXII	XXII dBm/3.84 MHz		-103		
XXV	XXV dBm/3.84 MHz -112.8		-102.5		
XXVI	XXVI dBm/3.84 MHz -112.8 -102.5				
<ul> <li>NOTE 1: For Power class 3 and 3bis this shall be at the maximum output power.</li> <li>NOTE 2: For Power class 4 this shall be at the maximum output power.</li> <li>NOTE 3: For the UE which supports both Band III and Band IX operating frequencies, the reference sensitivity level of -113.8 dBm DPCH_Ec <refsens> shall apply for Band IX. The corresponding <refî<sub>or&gt; is -103.5 dBm.</refî<sub></refsens></li> </ul>					
-113.3 dBm/3.84 MHz DPCH_Ec <refsens> shall apply for Band II. The corresponding</refsens>					

Table 6.2.2: Test parameters for Reference Sensitivity Level

<REFÎ_{or}> is -103 dBm/3.84 MHz.
NOTE 5: For the UE which supports DB-DC-HSDPA configuration 2, the reference sensitivity level of
-115.3 dBm/3.84 MHz DPCH_Ec <REFSENS> shall apply for Band IV. The corresponding
<REFÎ_{or}> is -105 dBm/3.84 MHz.

# 1.16.17. 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA

#### On the Time Domain Measurement with DC-HSUPA, Inner Loop Power Control (Auto) is not supported.

The following measurement uses Inner Loop Power Control measurement on the Time Domain Measurement screen. Due to limits on the equipment dynamic range (40 dB), Test Steps E, F, G, and H cannot be measured simultaneously, so measurement must be performed twice by changing the Input Level.

- 1. [Phone1]Execute SCRSEL TDMEAS to display the Time Domain Measurement screen.
- 2. [Phone1]Execute MEASOBJ ILPC to set [Measurement Object] to [Inner Loop Power Control].
- 3. [Phone1]Execute SLOTLIST ON to display the slot list.
- 4. [Phone1]Execute REGSLOTLIST 0-59 to register Slot0~Slot59 for the slot list.
- 5. [Phone1]Execute TIMSPAN 40.0MS to set [Time Span] of Time Domain measurement to [40.0] ms.
- 6. [Phone1]Execute OLVL -93 to set [Output Level] to [-93] dBm.
- 7. [Phone1]Execute TPCALGO 2 to set [Power Control Algorithm] to [Algorithm 2].
- 8. [Phone1]Execute TPCSTEP 1 to set [TPC Step Size] to [1 dB].
- 9. [Phone1]Execute TDM_RRC OFF to set [RRC Filter] to [Off].
- 10. [Phone1]Execute VFILTLEN 0.1US to set [Video Filter Length] to [0.1] μs.
- 11. [Phone2]Execute SCRSEL TDMEAS to display the Time Domain Measurement screen.
- 12. [Phone2]Execute MEASOBJ ILPC to set [Measurement Object] to [Inner Loop Power Control].
- 13. [Phone2]Execute SLOTLIST ON to display the slot list.
- 14. [Phone2]Execute REGSLOTLIST 0-59 to register Slot0~Slot59 for the slot list.
- 15. [Phone2]Execute TIMSPAN 40.0MS to set [Time Span] of Time Domain measurement to [40.0] ms.
- 16. [Phone2]Execute OLVL -93 to set [Output Level] to [-93] dBm.
- 17. [Phone2]Execute TDM_RRC OFF to set [RRC Filter] to [Off].
- 18. [Phone2]Execute VFILTLEN 0.1US to set [Video Filter Length] to [0.1] μs.
- 19. [Phone1]Connect with DC-HSUPA(QPSK).

# 1.16.17.1. Inner Loop Power Control Parameter

Inner Loop Power Control Parameter of Call Processing Parameter is the steady-state setting of the TPC command. When Power Control Bit Pattern is set to [Inner Loop Power Control], the TPC command is sent automatically to adjust UE output power to be Input Level.

In the case of Inner Loop Power Control Parameter of Time Domain Parameter, the TPC command between Slot 0 and the specified Slot is set only when Measurement Object of Time Domain Measurement is measured using Inner Loop Power Control. After sending the specified number of slots, the TPC command set at Call Processing Parameter is sent.

Sometimes, at Inner Loop Power Control measurement, the UE output power must be set lower (or higher) than [Input Level] before measurement.

Examples of how to set Input Level to +30 dBm and UE output power to -10 dBm are shown below.

- 1. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 2. [Phone1]Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 3. [Phone1]Wait until the UE power becomes –10.0 dBm.
- 4. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 5. [Phone1]Execute ILVL 30.0 to set [Input Level] to [+30.0] dBm.
- 6. [Phone2]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 7. [Phone2]Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 8. [Phone2]Wait until the UE power becomes –10.0 dBm.
- 9. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 10. [Phone2]Execute ILVL 30.0 to set [Input Level] to [+30.0] dBm.

## 1.16.17.2. Measurement of Inner Loop Power Control in Uplink for DC-HSUPA

To connect with DC-HSUPA(QPSK), See 1.16.3 Connection with DC-HSUPA(QPSK).

[Step A]

- 1. [Phone1]Execute ILP_TPC A to set [TPC Method] to [Step A].
- 2. [Phone2] Execute HSSCCH OFF to set [HSSCCH power] to [Off] for Secondary Serving Cell.
- 3. [Phone1]Execute TPCALGO 2 to set [Power Control Algorithm] to [Algorithm 2].
- 4. [Phone2] Execute HSSCCH ON to set [HSSCCH power] to [On] for Secondary Serving Cell.
- 5. [Phone1]Execute TPCSTEP 1 to set [TPC Step Size] to [1 dB].
- 6. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 7. [Phone1]Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 8. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 9. [Phone1]Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 10. [Phone2]Execute ILP_TPC A to set [TPC Method] to [Step A].
- 11. [Phone2]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 12. [Phone2]Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 13. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 14. [Phone2]Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 15. [Phone1]Execute SNGLS to perform measurement.
- 16. [Phone2]Execute SNGLS to perform measurement.
- 17. [Phone1]Repeat MSTAT? until the response becomes 0.
- 18. [Phone2]Repeat MSTAT? until the response becomes 0.
- 19. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 20. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.
- 21. Confirm the difference in mean power between adjacent slots on each carrier shall be within the prescribed range for a TPC_cmd of 0, as given in 3GPP TS34.121 table 5.4.2A.5.1.
- 22. Confirm the change in mean power over 10 consecutive slots on each carrier shall be within the prescribed range for a TPC_cmd group of 0, as given in 3GPP TS34.121 table 5.4.2A.5.2

The interval of two SNGLS above should be less than 400ms.

#### [Step B]

- 1. [Phone1]Execute ILP_TPC B to set [TPC Method] to [Step B].
- 2. [Phone1]Execute TPCALGO 2 to set [Power Control Algorithm] to [Algorithm 2].
- 3. [Phone1]Execute TPCSTEP 1 to set [TPC Step Size] to [1 dB].
- 4. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 5. [Phone1]Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 6. [Phone2]Execute ILP_TPC B to set [TPC Method] to [Step B].
- 7. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 8. [Phone2]Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 9. [Phone1]Execute SNGLS to perform measurement.
- 10. [Phone2]Execute SNGLS to perform measurement.
- 11. [Phone1]Repeat MSTAT? until the response becomes 0.
- 12. [Phone2]Repeat MSTAT? until the response becomes 0.
- 13. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 14. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.
- 15. Confirm the difference in mean power between adjacent slots on each carrier shall be within the prescribed range given in 3GPP TS34.121 table 5.4.2A.5.1, given that every 5th TPC_cmd should have the value +1, with a step size of 1 dB, and all other TPC_cmd should have the value 0.
- 16. Confirm the change in mean power over 50 consecutive slots on each carrier shall be within the prescribed range for a TPC_cmd group of {0,0,0,+1}, as given in 3GPP TS34.121 table 5.4.2A.5.2.

The interval of two SNGLS above should be less than 400ms.

#### [Step C]

- 1. [Phone1]Execute ILP_TPC C to set [TPC Method] to [Step C].
- 2. [Phone1]Execute TPCALGO 2 to set [Power Control Algorithm] to [Algorithm 2].
- 3. [Phone1]Execute TPCSTEP 1 to set [TPC Step Size] to [1 dB].
- 4. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 5. [Phone1]Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 6. [Phone2]Execute ILP_TPC C to set [TPC Method] to [Step C].
- 7. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 8. [Phone2]Execute ILVL 0.0 to set [Input Level] to [0.0] dBm.
- 9. [Phone1]Execute SNGLS to perform measurement.
- 10. [Phone2]Execute SNGLS to perform measurement.
- 11. [Phone1]Repeat MSTAT? until the response becomes 0.
- 12. [Phone2]Repeat MSTAT? until the response becomes 0.
- 13. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 14. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.
- 15. Confirm the difference in mean power between adjacent slots on each carrier shall be within the prescribed range given in 3GPP TS34.121 table 5.4.2A.5.1, given that every 5th TPC_cmd should have the value -1, with a step size of 1 dB, and all other TPC_cmd should have the value 0.
- 16. Confirm the change in mean power over 50 consecutive slots on each carrier shall be within the prescribed range for a TPC_cmd group of {0,0,0,-1}, as given in 3GPP TS34.121 table 5.4.2A.5.2.

The interval of two SNGLS above should be less than 400ms.

#### [Step D]

- 1. [Phone1]Execute ILP_TPC D to set [TPC Method] to [Step D].
- 2. [Phone2] Execute HSSCCH OFF to set [HSSCCH power] to [Off] for Secondary Serving Cell.
- 3. [Phone1]Execute TPCALGO 1 to set [Power Control Algorithm] to [Algorithm 1].
- 4. [Phone2] Execute HSSCCH ON to set [HSSCCH power] to [On] for Secondary Serving Cell.
- 5. [Phone1]Execute TPCSTEP 1 to set [TPC Step Size] to [1 dB].
- 6. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 7. [Phone1]Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 8. [Phone2]Execute ILP_TPC D to set [TPC Method] to [Step D].
- 9. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 10. [Phone2]Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 11. [Phone1]Execute SNGLS to perform measurement.
- 12. [Phone2]Execute SNGLS to perform measurement.
- 13. [Phone1]Repeat MSTAT? until the response becomes 0.
- 14. [Phone2]Repeat MSTAT? until the response becomes 0.
- 15. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 16. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.
- 17. Confirm the UE output power is above the maximum power threshold.

The interval of two SNGLS above should be less than 400ms.

#### [Step E 1]

- 1. [Phone1]Execute ILP_TPC E to set [TPC Method] to [Step E].
- 2. [Phone1]Execute ILP_CMDSLOT E,40 to set [Length] of Test Step E to [40] Slot.
- 3. [Phone1]Execute TPCALGO 1 to set [Power Control Algorithm] to [Algorithm 1].
- 4. [Phone1]Execute TPCSTEP 1 to set [TPC Step Size] to [1 dB].
- 5. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 6. [Phone1]Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 7. [Phone2]Execute ILP_TPC E to set [TPC Method] to [Step E].
- 8. [Phone2]Execute ILP_CMDSLOT E,40 to set [Length] of Test Step E to [40] Slot.
- 9. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 10. [Phone2]Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 11. [Phone1]Execute SNGLS to perform measurement.
- 12. [Phone2]Execute SNGLS to perform measurement.
- 13. [Phone1]Repeat MSTAT? until the response becomes 0.
- 14. [Phone2]Repeat MSTAT? until the response becomes 0.
- 15. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 16. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.

The interval of two SNGLS above should be less than 400ms.

#### [Step E 2]

- 1. [Phone1]Execute ILP_TPC E to set [TPC Method] to [Step E].
- 2. [Phone1]Execute ILP_CMDSLOT E,40 to set [Length] of Test Step E to [40] Slot.
- 3. [Phone1]Execute TPCALGO 1 to set [Power Control Algorithm] to [Algorithm 1].
- 4. [Phone1]Execute TPCSTEP 1 to set [TPC Step Size] to [1 dB].
- 5. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 6. [Phone1]Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 7. [Phone2]Execute ILP_TPC E to set [TPC Method] to [Step E].
- 8. [Phone2]Execute ILP_CMDSLOT E,40 to set [Length] of Test Step E to [40] Slot.
- 9. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 10. [Phone2]Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 11. [Phone1]Execute SNGLS to perform measurement.
- 12. [Phone2]Execute SNGLS to perform measurement.
- 13. [Phone1]Repeat MSTAT? until the response becomes 0.
- 14. [Phone2]Repeat MSTAT? until the response becomes 0.
- 15. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 16. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.
- 17. Combine segmentations at Step E1 and E2.
- 18. Confirm the difference in mean power between adjacent slots on each carrier shall be within the prescribed range given in 3GPP TS34.121 table 5.4.2A.5.1 for a TPC_cmd of -1 and step size of 1 dB. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step D. For the power step adjacent to the Min or Max power threshold for test, the lower step size requirement does not apply.
- 19. Confirm the change in mean power over 10 consecutive slots on each carrier shall be within the prescribed range for a TPC_cmd group of -1, and step size of 1 dB as given in 3GPP TS34.121 table 5.4.2A.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step D. The power step adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots tested.

The interval of two SNGLS above should be less than 400ms.
#### [Step F 1]

- 1. [Phone1]Execute ILP_TPC F to set [TPC Method] to [Step F].
- 2. [Phone1]Execute ILP_CMDSLOT F,40 to set [Length] of Test Step F to [40] Slot.
- 3. [Phone1]Execute TPCALGO 1 to set [Power Control Algorithm] to [Algorithm 1].
- 4. [Phone1]Execute TPCSTEP 1 to set [TPC Step Size] to [1 dB].
- 5. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 6. [Phone1]Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 7. [Phone2]Execute ILP_TPC F to set [TPC Method] to [Step F].
- 8. [Phone2]Execute ILP_CMDSLOT F,40 to set [Length] of Test Step F to [40] Slot.
- 9. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 10. [Phone2]Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 11. [Phone1]Execute SNGLS to perform measurement.
- 12. [Phone2]Execute SNGLS to perform measurement.
- 13. [Phone1]Repeat MSTAT? until the response becomes 0.
- 14. [Phone2]Repeat MSTAT? until the response becomes 0.
- 15. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 16. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.
- The interval of two SNGLS above should be less than 400ms.

#### [Step F 2]

- 1. [Phone1]Execute ILP_TPC F to set [TPC Method] to [Step F].
- 2. [Phone1]Execute ILP_CMDSLOT F,40 to set [Length] of Test Step F to [40] Slot.
- 3. [Phone1]Execute TPCALGO 1 to set [Power Control Algorithm] to [Algorithm 1].
- 4. [Phone1]Execute TPCSTEP 1 to set [TPC Step Size] to [1 dB].
- 5. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 6. [Phone1]Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 7. [Phone2]Execute ILP_TPC F to set [TPC Method] to [Step F].
- 8. [Phone2]Execute ILP_CMDSLOT F,40 to set [Length] of Test Step F to [40] Slot.
- 9. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 10. [Phone2]Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 11. [Phone1]Execute SNGLS to perform measurement.
- 12. [Phone2]Execute SNGLS to perform measurement.
- 13. [Phone1]Repeat MSTAT? until the response becomes 0.
- 14. [Phone2]Repeat MSTAT? until the response becomes 0.
- 15. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 16. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.
- 17. Combine segmentations at Step F1 and F2.
- 18. Confirm the difference in mean power between adjacent slots on each carrier shall be within the prescribed range given in 3GPP TS34.121 table 5.4.2A.5.1 for a TPC_cmd of +1 and step size of 1 dB. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. For the power step adjacent to the Min or Max power threshold for test, the lower step size requirement does not apply.
- 19. Confirm the change in mean power over 10 consecutive slots on each carrier shall be within the prescribed range for a TPC_cmd group of +1, and step size of 1 dB as given in 3GPP TS34.121 table 5.4.2A.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. The power step adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots tested.

The interval of two SNGLS above should be less than 400ms.

#### [Step G 1]

- 1. [Phone1]Execute ILP_TPC G to set [TPC Method] to [Step G].
- 2. [Phone1]Execute ILP_CMDSLOT G,20 to set [Length] of Test Step G to [20] Slot.
- 3. [Phone1]Execute TPCALGO 1 to set [Power Control Algorithm] to [Algorithm 1].
- 4. [Phone2] Execute HSSCCH OFF to set [HSSCCH power] to [Off] for Secondary Serving Cell.
- 5. [Phone1]Execute TPCSTEP 2 to set [TPC Step Size] to [2 dB].
- 6. [Phone2] Execute HSSCCH ON to set [HSSCCH power] to [On] for Secondary Serving Cell.
- 7. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 8. [Phone1]Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 9. [Phone2]Execute ILP_TPC G to set [TPC Method] to [Step G].
- 10. [Phone2]Execute ILP_CMDSLOT G,20 to set [Length] of Test Step G to [20] Slot.
- 11. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 12. [Phone2]Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 13. [Phone1]Execute SNGLS to perform measurement.
- 14. [Phone2]Execute SNGLS to perform measurement.
- 15. [Phone1]Repeat MSTAT? until the response becomes 0.
- 16. [Phone2]Repeat MSTAT? until the response becomes 0.
- 17. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 18. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.

The interval of two SNGLS above should be less than 400ms.

#### [Step G 2]

- 1. [Phone1]Execute ILP_TPC G to set [TPC Method] to [Step G].
- 2. [Phone1]Execute ILP_CMDSLOT G,20 to set [Length] of Test Step G to [20] Slot.
- 3. [Phone1]Execute TPCALGO 1 to set [Power Control Algorithm] to [Algorithm 1].
- 4. [Phone1]Execute TPCSTEP 2 to set [TPC Step Size] to [2 dB].
- 5. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 6. [Phone1]Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 7. [Phone2]Execute ILP_TPC G to set [TPC Method] to [Step G].
- 8. [Phone2]Execute ILP_CMDSLOT G,20 to set [Length] of Test Step G to [20] Slot.
- 9. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 10. [Phone2]Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 11. [Phone1]Execute SNGLS to perform measurement.
- 12. [Phone2]Execute SNGLS to perform measurement.
- 13. [Phone1]Repeat MSTAT? until the response becomes 0.
- 14. [Phone2]Repeat MSTAT? until the response becomes 0.
- 15. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 16. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.
- 17. Combine segmentations at Step G1 and G2.
- 18. Confirm the difference in mean power between adjacent slots on each carrier shall be within the prescribed range given in 3GPP TS34.121 table 5.4.2A.5.1 for a TPC_cmd of -1 and step size of 2 dB. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. For the power step adjacent to the Min or Max power threshold for test, the lower step size requirement does not apply.
- 19. Confirm the change in mean power over 10 consecutive slots on each carrier shall be within the prescribed range for a TPC_cmd group of -1, and step size of 2 dB as given in 3GPP TS34.121 table 5.4.2A.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step F. The power step adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots.

The interval of two SNGLS above should be less than 400ms.

#### [Step H 1]

- 1. [Phone1]Execute ILP_TPC H to set [TPC Method] to [Step H].
- 2. [Phone1]Execute ILP_CMDSLOT H,20 to set [Length] of Test Step H to [20] Slot.
- 3. [Phone1]Execute TPCALGO 1 to set [Power Control Algorithm] to [Algorithm 1].
- 4. [Phone1]Execute TPCSTEP 2 to set [TPC Step Size] to [2 dB].
- 5. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 6. [Phone1]Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 7. [Phone2]Execute ILP_TPC H to set [TPC Method] to [Step H].
- 8. [Phone2]Execute ILP_CMDSLOT H,20 to set [Length] of Test Step H to [20] Slot.
- 9. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 10. [Phone2]Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 11. [Phone1]Execute SNGLS to perform measurement.
- 12. [Phone2]Execute SNGLS to perform measurement.
- 13. [Phone1]Repeat MSTAT? until the response becomes 0.
- 14. [Phone2]Repeat MSTAT? until the response becomes 0.
- 15. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 16. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.

The interval of two SNGLS above should be less than 400ms.

#### [Step H 2]

- 1. [Phone1]Execute ILP_TPC H to set [TPC Method] to [Step H].
- 2. [Phone1]Execute ILP_CMDSLOT H,20 to set [Length] of Test Step H to [20] Slot.
- 3. [Phone1]Execute TPCALGO 1 to set [Power Control Algorithm] to [Algorithm 1].
- 4. [Phone1]Execute TPCSTEP 2 to set [TPC Step Size] to [2 dB].
- 5. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 6. [Phone1]Execute ILVL 30.0 to set [Input Level] to [+30.0] dBm.
- 7. [Phone2]Execute ILP_TPC H to set [TPC Method] to [Step H].
- 8. [Phone2]Execute ILP_CMDSLOT H,20 to set [Length] of Test Step H to [20] Slot.
- 9. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 10. [Phone2]Execute ILVL 30.0 to set [Input Level] to [+30.0] dBm.
- 11. [Phone1]Execute SNGLS to perform measurement.
- 12. [Phone2]Execute SNGLS to perform measurement.
- 13. [Phone1]Repeat MSTAT? until the response becomes 0.
- 14. [Phone2]Repeat MSTAT? until the response becomes 0.
- 15. [Phone1]Execute SLOT_PWR? ALL to read the measurement result.
- 16. [Phone2]Execute SLOT_PWR? ALL to read the measurement result.
- 17. Combine segmentations at Step H1 and H2.
- 18. Confirm the difference in mean power between adjacent slots on each carrier shall be within the prescribed range given in 3GPP TS34.121 table 5.4.2A.5.1 for a TPC_cmd of +1 and step size of 2 dB. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step H. For the power step adjacent to the Min or Max power threshold for test, the lower step size requirement does not apply.
- 19. Confirm the change in mean power over 10 consecutive slots on each carrier shall be within the prescribed range for a TPC_cmd group of +1, and step size of 2 dB as given in 3GPP TS34.121 table 5.4.2A.5.2. This applies when the original (reference) timeslot power and the target timeslot power are between the Min power threshold for test and the Max power threshold for test derived from the Measured Maximum output power in Step H. The power step adjacent to the Min or Max power threshold for test should not be part of the 10 consecutive slots tested.

The interval of two SNGLS above should be less than 400ms.

20. Confirm the measurement results above with the following table.

TPC_cmd	Tra	Transmitter power control range (all units are in dB)				
	1 dB st	1 dB step size 2 dB step size		3 dB step size		
	Lower	Upper	Lower	Upper	Lower	Upper
+1	+0,4	+1,6	+0,85	+3,15	+1,3	+4,7
0	-0,6	+0,6	-0,6	+0,6	-0,6	+0,6
–1	-0,4	-1,6	-0,85	-3,15	-1,3	-4,7

3GPP TS 34.121 Table 5.4.2A.5.1: Transmitter power control range

#### 3GPP TS 34.121 Table 5.4.2A.5.2: Transmitter aggregate power control tolerance

TPC_cmd group	Transmitter power control range after 10 equal TPC_cmd group (all units are in dB)			Transmitt control ran equal TPC_c (all units a	er power ige after 7 md groups are in dB)	
	1 dB st	ep size	2 dB st	ep size	3 dB ste	ep size
	Lower	Upper	Lower	Upper	Lower	Upper
+1	+7,7	+12,3	+15,7	+24,3	+15,7	+26,3
0	-1,1	+1,1	-1,1	+1,1	-1,1	+1,1
-1	-7,7	-12,3	-15,7	-24,3	-15,7	-26,3
0,0,0,0,+1	+5,7	+14,3	N/A	N/A	N/A	N/A
0,0,0,0,-1	-5,7	-14,3	N/A	N/A	N/A	N/A

## 1.16.17.3. How to Combine Segmentations at Step E, F, G, H of Inner Loop Power Control

Due to dynamic range limits, each Test Step E, F, G and H must be performed twice at different Input Levels. See the following explanations to combine the first and second Slot List.

Before the first measurement, set [Power Control Bit Pattern] to [Alternate], so the [Power Control Bit Pattern] is [Alternate] also after the measurement.

Because the first and last bits are not fixed, there are four Alternate Patterns sent between combined segmentation {0,1, ...,1,0},{0,1,...,0,1},{1,0,...,1,0},{1,0,...,0,1}.

Combination must be performed by considering "the sum of Bit number 0 is larger than Bit number 1," "the sum of Bit number 0 and 1 are equal," "the sum of Bit number 0 is smaller than Bit number 1."

An example of Test StepE is shown below.

(1) When the sum of Bit number 0 is larger than Bit number 1 {0,1, ...,1,0}
 The head Slot No. of StepE2 becomes -1, because it starts with the level that is 1 dB lower than the last Slot of StepE1.



(2) When the sum of Bit number 0 and 1 are equal {0,1,...,0,1}, {1,0,...,1,0} The head Slot No. of StepE2 becomes 0, because it starts with the same level as the last Slot of StepE1.



(3) When the sum of Bit number 0 is smaller than Bit number 1 {1,0,...,0,1}

The head Slot No of StepE2 becomes 1, because it starts with the level that is 1 dB higher than the last Slot of StepE1.



#### [Step E]

- 1. Execute [Step E 1] (see 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA.)
- 2. Execute **REGSLOTLIST -1** to register Slot(-1) in slot list.
- 3. Execute **TRGDELAY -0.7MS** to set [Trigger Delay] to [-0.7] ms (1Slot length).
- 4. Execute [Step E 2]. (see 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA.)
- 5. Check the Power difference between the first Slot of Step E 2 and the last Slot of Step E 1.
  - When the difference is <-0.5 dB, the head Slot of Step E 2 becomes -1.
  - When the difference is within ±0.5 dB, the head Slot of Step E 2 becomes 0.
  - When the difference is >0.5 dB, the head Slot of Step E 2 becomes 1.

#### [Step F]

- 1. Execute [Step F 1]. (see 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA.)
- 2. Execute **REGSLOTLIST -1** to register Slot(-1) in slot list.
- 3. Execute **TRGDELAY -0.7MS** to set [Trigger Delay] to [-0.7] ms (1Slot length).
- 4. Execute [Step F 2]. (see 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA.)
- 5. Check the Power difference between the first Slot of Step F 2 and the last Slot of Step F 1.
  - When the difference is <-0.5 dB, the head Slot of Step F 2 becomes 1.
  - When the difference is within ±0.5 dB, the head Slot of Step F 2 becomes 0.
  - When the difference is >0.5 dB, the head Slot of Step F 2 becomes -1.

#### [Step G]

- 1. Execute [Step G 1]. (see 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA.)
- 2. Execute **REGSLOTLIST -1** to register Slot(-1) in slot list.
- 3. Execute **TRGDELAY -0.7MS** to set [Trigger Delay] to [-0.7] ms (1Slot length).
- 4. Execute [Step G 2]. (see 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA.)
- 5. Check the Power difference between the first Slot of Step G 2 and the last Slot of Step G 1.
  - When the difference is <-1 dB, the head Slot of Step G 2 becomes -1.
  - When the difference is within ±1 dB, the head Slot of Step G 2 becomes 0.
  - When the difference is >1 dB, the head Slot of Step G 2 becomes 1.

#### [Step H]

- 1. Execute [Step H 1]. (see 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA.)
- 2. Execute **REGSLOTLIST -1** to register Slot(-1) in slot list.
- 3. Execute **TRGDELAY -0.7MS** to set [Trigger Delay] to [-0.7] ms (1Slot length).
- 4. Execute [Step H 2]. (see 5.4.2A Inner Loop Power Control in the Uplink for DC-HSUPA.)
- 5. Check the Power difference between the first Slot of Step H 2 and the last Slot of Step H 1.
  - When the difference is <–1 dB, the head Slot of Step H 2 becomes 1.
  - When the difference is within ±1 dB, the head Slot of Step H 2 becomes 0.
  - When the difference is >1 dB, the head Slot of Step H 2 becomes -1.

## 1.16.18. 5.4.3A Minimum Output Power for DC-HSUPA

To connect with DC-HSUPA(QPSK), see 1.16.3 Connection with DC-HSUPA(QPSK).

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [2].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 10. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 11. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 12. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 13. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 14. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 15. [Phone1]Execute SCRSEL FMEAS to display the Fundamental Measurement screen.
- 16. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 17. [Phone2]Execute SCRSEL FMEAS to display the Fundamental Measurement screen.
- 18. [Phone2]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 19. [Phone1]Execute ILVL -30.0 to set [Input Level] to [-30.0] dBm.
- 20. [Phone2]Execute ILVL -30.0 to set [Input Level] to [-30.0] dBm.
- 21. [Phone1]Execute TPCPAT ALLO to set [Power Control Bit Pattern] to [All0].
- 22. [Phone1]Execute SWP to perform Power measurement.
- 23. [Phone2]Execute TPCPAT ALLO to set [Power Control Bit Pattern] to [All0].
- 24. [Phone1] Execute AVG_POWER? to read the power measurement result.
- 25. [Phone1]Execute AVG_POWER_S? to read the Power measurement result as Power2.
- 26. [Phone1] Confirm the measurement result is lower than -49 dBm.

To measure Power, OBW,SEM and ACLR measurement items should be turned off.

## 1.16.19. 5.8A Occupied Bandwidth (OBW) for DC-HSUPA

To connect with DC-HSUPA(QPSK), see 1.16.3 Connection with DC-HSUPA(QPSK).

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute ALLMEASITEMS_OFF to set all measurement items to [Off].
- 7. [Phone1]Execute OBW_MEAS ON to set [Occupied Bandwidth measurement] to [On].
- 8. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 9. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 10. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 11. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 12. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 13. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 14. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 15. [Phone1]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 16. [Phone2]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 17. Wait 150ms until the UE power becomes 10.0 dBm.
- 18. [Phone1]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 19. [Phone2]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 20. [Phone1]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 21. [Phone2]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 22. [Phone1]Execute SWP to perform Occupied Bandwidth measurement.
- 23. [Phone1]Execute OBW? to read the Occupied Bandwidth measurement result.
- 24. [Phone1]Confirm the measurement result is lower than 10 MHz.

To measure OBW or SEM or ACLR, other measurement items should be turned off.

## 1.16.20. 5.9C Additional Spectrum Emission Mask for DC-HSUPA(QPSK)

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute ALLMEASITEMS_OFF to set all measurement items to [Off].
- 7. [Phone1]Execute SMASK_MEAS ON to set [Spectrum Emission Mask measurement] to [On].
- 8. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 9. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 10. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 11. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 12. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 13. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 14. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 15. [Phone1]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 16. [Phone2]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 17. Wait 150ms until the UE power becomes 10.0 dBm.
- 18. [Phone1]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 19. [Phone2]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 20. [Phone1]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 21. [Phone2]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 22. Wait 150ms until the UE power reaches Maximum Power.
- 23. [Phone1]Execute SWP to perform Spectrum Emission Mask measurement.
- 24. [Phone1] Execute SMASKPASS? to read the Spectrum Emission Mask measurement result.
- 25. [Phone1]Confirm the measurement result is PASS.

To measure OBW or SEM or ACLR, other measurement items should be turned off.

## 1.16.21. 5.9D Additional Spectrum Emission Mask for DC-HSUPA(16QAM)

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(16QAM).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute ALLMEASITEMS_OFF to set all measurement items to [Off].
- 7. [Phone1]Execute SMASK_MEAS ON to set [Spectrum Emission Mask measurement] to [On].
- 8. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 9. [Phone1]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [6].
- 10. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 11. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 12. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 13. [Phone2]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [6].
- 14. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 15. [Phone1]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 16. [Phone2]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 17. Wait 150ms until the UE power becomes 10.0 dBm.
- 18. [Phone1]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 19. [Phone2]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 20. [Phone1]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 21. [Phone2]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 22. Wait 150ms until the UE power reaches Maximum Power.
- 23. [Phone1]Execute SWP to perform Spectrum Emission Mask measurement.
- 24. [Phone1] Execute SMASKPASS? to read the Spectrum Emission Mask measurement result.
- 25. [Phone1]Confirm the measurement result is PASS.

To measure OBW or SEM or ACLR, other measurement items should be turned off.

# 1.16.22. 5.10C Adjacent Channel Leakage Power Ratio (ACLR) with E-DCH for DC-HSUPA(QPSK)

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute ALLMEASITEMS_OFF to set all measurement items to [Off].
- 7. [Phone1]Execute ADJ_MEAS ON to set [Adjacent Channel Power measurement] to [On].
- 8. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 9. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 10. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 11. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 12. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 13. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 14. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 15. [Phone1]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 16. [Phone2]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 17. Wait 150ms until the UE power becomes 10.0 dBm.
- 18. [Phone1]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 19. [Phone2]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 20. [Phone1]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 21. [Phone2]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 22. Wait 150ms until the UE power reaches Maximum Power.
- 23. [Phone1]Execute SWP to perform Adjacent Channel Power measurement.
- 24. [Phone1]Execute AVG_MODPWR? LOW12.5 to read the Adjacent Channel Power measurement result.
- 25. [Phone1]Confirm the measurement result is lower than -35.2 dB.
- 26. [Phone1]Execute AVG_MODPWR? LOW7.5 to read the Adjacent Channel Power measurement result.
- 27. **[Phone1]**Confirm the measurement result is lower than -32.2 dB.
- 28. [Phone1]Execute AVG_MODPWR? UP7.5 to read the Adjacent Channel Power measurement result.
- 29. [Phone1]Confirm the measurement result is lower than -32.2 dB.
- 30. [Phone1]Execute AVG_MODPWR? UP12.5 to read the Adjacent Channel Power measurement result.
- 31. [Phone1]Confirm the measurement result is lower than -35.2 dB.

To measure OBW or SEM or ACLR, other measurement items should be turned off.

# 1.16.23. 5.10D Adjacent Channel Leakage Power Ratio (ACLR) with E-DCH for DC-HSUPA(16QAM)

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(16QAM).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute ALLMEASITEMS_OFF to set all measurement items to [Off].
- 7. [Phone1]Execute ADJ_MEAS ON to set [Adjacent Channel Power measurement] to [On].
- 8. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 9. [Phone1]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [24].
- 10. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 11. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 12. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 13. [Phone2]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [24].
- 14. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 15. [Phone1]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 16. [Phone2]Execute ILVL 10.0 to set [Input Level] to [+10.0] dBm.
- 17. Wait 150ms until the UE power becomes 10.0 dBm.

- 18. [Phone1]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 19. [Phone2]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 20. [Phone1]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 21. [Phone2]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 22. Wait 150ms until the UE power reaches Maximum Power.
- 23. [Phone1]Execute SWP to perform Adjacent Channel Power measurement.
- 24. [Phone1]Execute AVG_MODPWR? LOW12.5 to read the Adjacent Channel Power measurement result.
- 25. [Phone1]Confirm the measurement result is lower than -35.2 dB.
- 26. [Phone1]Execute AVG_MODPWR? LOW7.5 to read the Adjacent Channel Power measurement result.
- 27. **[Phone1]**Confirm the measurement result is lower than -32.2 dB.
- 28. [Phone1]Execute AVG_MODPWR? UP7.5 to read the Adjacent Channel Power measurement result.
- 29. [Phone1]Confirm the measurement result is lower than -32.2 dB.
- 30. [Phone1]Execute AVG_MODPWR? UP12.5 to read the Adjacent Channel Power measurement result.
- 31. [Phone1]Confirm the measurement result is lower than -35.2 dB.

To measure OBW or SEM or ACLR, other measurement items should be turned off.

#### 1.16.24. 5.13.2BA Relative Code Domain Error with HS-DPCCH and E-DCH for DC-HSUPA

To connect with DC-HSUPA(QPSK), see 1.16.3 Connection with DC-HSUPA(QPSK).

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 2 to set [TPC Algorithm] to [2].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute RCDE_MEAS ON to set [RCDE measurement] to [On].
- 10. [Phone1]Execute RCDE_AVG 20 to set [Average Count] of RCDE measurement to [20] times.
- 11. [Phone1]Execute TPUTU_MEAS ON to set [HSUPA Throughput] measurement to [On].
- 12. [Phone1]Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].
- 13. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 14. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 15. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 16. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 17. [Phone2]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 18. [Phone2]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 19. [Phone2]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 20. [Phone2]Execute RCDE_MEAS ON to set [RCDE measurement] to [On].
- 21. [Phone2]Execute RCDE_AVG 20 to set [Average Count] of RCDE measurement to [20] times.
- 22. [Phone2]Execute TPUTU_MEAS ON to set [HSUPA Throughput] measurement to [On].
- 23. [Phone2]Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].
- 24. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 25. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 26. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 27. [Phone2]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 28. [Phone1]Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 29. [Phone2]Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 30. Wait 150ms until the UE power becomes 15.0 dBm.
- 31. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 32. [Phone1]Execute SWP to perform HSUPA Throughput measurement and RCDE measurement.
- 33. [Phone1]Execute AVG_ETFCI? to read the E-TFCI measurement result, and confirm it is 1.
- 34. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 35. [Phone2]Execute SWP to perform HSUPA Throughput measurement and RCDE measurement.
- 36. [Phone2]Execute AVG_ETFCI? to read the E-TFCI measurement result, and confirm it is <u>1</u>.
- 37. **[Phone1]**Execute **AVG_DPCCHECDP?** to read the ECDP DPCCH measurement result.

- 38. [Phone1]Execute AVG_HSDPCCHECDP? to read the ECDP HS-DPCCH measurement result.
- 39. [Phone1]Execute AVG_EDPCCHECDP? to read the ECDP E-DPCCH measurement result.
- 40. **[Phone1]**Execute **AVG_EDPDCH1ECDP?** to read the ECDP E-DPDCH1 measurement result.
- 41. [Phone1]Execute AVG_DPCCHRCDE? to read the Relative Code Domain Error DPCCH measurement result.
- 42. [Phone1]Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 43. [Phone1]Execute AVG_EDPCCHRCDE? to read the Relative Code Domain Error E-DPCCH measurement result.
- 44. **[Phone1]**Execute **AVG_EDPDCH1RCDE?** to read the Relative Code Domain Error E-DPDCH1 measurement result.
- 45. **[Phone1]**Confirm the Relative Code Domain Error is as follows. Relative Code Domain Error  $\leq -15.5$  dB, when -21 dB < ECDP and Relative Code Domain Error  $\leq -36.5$  – ECDP, when -30 dB  $\leq$  ECDP  $\leq -21$  dB.
- 46. [Phone2]Execute AVG_DPCCHECDP? to read the ECDP DPCCH measurement result.
- 47. [Phone2]Execute AVG_HSDPCCHECDP? to read the ECDP HS-DPCCH measurement result.
- 48. **[Phone2]**Execute **AVG_EDPCCHECDP?** to read the ECDP E-DPCCH measurement result.
- 49. [Phone2]Execute AVG_EDPDCH1ECDP? to read the ECDP E-DPDCH1 measurement result.
- 50. [Phone2]Execute AVG_DPCCHRCDE? to read the Relative Code Domain Error DPCCH measurement result.
- 51. [Phone2]Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 52. [Phone2]Execute AVG_EDPCCHRCDE? to read the Relative Code Domain Error E-DPCCH measurement result.
- 53. [Phone2]Execute AVG_EDPDCH1RCDE? to read the Relative Code Domain Error E-DPDCH1 measurement result.
- 54. **[Phone2]**Confirm the Relative Code Domain Error is as follows. Relative Code Domain Error  $\leq -15.5$  dB, when -21 dB  $\leq$  ECDP and Relative Code Domain Error  $\leq -36.5 -$  ECDP, when -30 dB  $\leq$  ECDP  $\leq -21$  dB.
- 55. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 56. [Phone2]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 57. [Phone1]Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 58. [Phone2]Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 59. Wait 150ms until the UE power becomes -18.0 dBm.
- 60. Repeat procedures 31to 54.

To measure Power/ HSUPA Throughput, OBW,SEM and ACLR measurement items should be turned off.

# 1.16.25. 5.13.2CA Relative Code Domain Error with HS-DPCCH and E-DCH with 16QAM for DC-HSUPA

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 2 to set [TPC Algorithm] to [2].
- 4. [Phone1]Connect with DC-HSUPA(16QAM).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute RCDE_MEAS ON to set [RCDE measurement] to [On].
- 10. [Phone1]Execute RCDE_AVG 20 to set [Average Count] of RCDE measurement to [20] times.
- 11. [Phone1]Execute TPUTU_MEAS ON to set [HSUPA Throughput] measurement to [On].
- 12. [Phone1]Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].
- 13. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 14. [Phone1]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [24].
- 15. **[Phone2]**Execute **DDPCHTOFS 6** to set [DPCH Timing Offset] to [6].
- 16. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 17. [Phone2]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 18. [Phone2]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 19. [Phone2]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].

- 20. [Phone2]Execute RCDE_MEAS ON to set [RCDE measurement] to [On].
- 21. [Phone2]Execute RCDE_AVG 20 to set [Average Count] of RCDE measurement to [20] times.
- 22. [Phone2]Execute TPUTU_MEAS ON to set [HSUPA Throughput] measurement to [On].
- 23. [Phone2]Execute TPUTU_SAMPLE 15 to set [HSUPA Throughput Number of Sample] to [15].
- 24. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 25. [Phone2]Execute ABSGNTVAL 24 to set [Absolute Grant Value] to [24].
- 26. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 27. [Phone2]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 28. [Phone1]Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 29. [Phone2]Execute ILVL 15.0 to set [Input Level] to [+15.0] dBm.
- 30. Wait 150ms until the UE power becomes 15.0 dBm.
- 31. [Phone1]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 32. [Phone1]Execute SWP to perform HSUPA Throughput measurement and RCDE measurement.
- 33. [Phone1]Execute AVG_ETFCI? to read the E-TFCI measurement result, and confirm it is 67.
- 34. [Phone2]Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 35. [Phone2]Execute SWP to perform HSUPA Throughput measurement and RCDE measurement.
- 36. [Phone2]Execute AVG_ETFCI? to read the E-TFCI measurement result, and confirm it is 67.
- 37. [Phone1]Execute AVG_DPCCHECDP? to read the ECDP DPCCH measurement result.
- 38. [Phone1]Execute AVG_HSDPCCHECDP? to read the ECDP HS-DPCCH measurement result.
- 39. [Phone1]Execute AVG_EDPCCHECDP? to read the ECDP E-DPCCH measurement result.
- 40. [Phone1]Execute AVG_EDPDCH1ECDP? to read the ECDP E-DPDCH1 measurement result.
- 41. [Phone1]Execute AVG_DPCCHRCDE? to read the Relative Code Domain Error DPCCH measurement result.
- 42. [Phone1]Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 43. [Phone1]Execute AVG_EDPCCHRCDE? to read the Relative Code Domain Error E-DPCCH measurement result.
- 44. **[Phone1]**Execute **AVG_EDPDCH1RCDE?** to read the Relative Code Domain Error E-DPDCH1 measurement result.
- 45. [Phone1]Confirm the Relative Code Domain Error is as follows.
   Relative Code Domain Error ≤ -17.5 dB, when -25.5 dB < ECDP and</li>
   Relative Code Domain Error ≤ -43.0 ECDP, when -30 dB ≤ ECDP ≤ -25.5 dB.
- 46. [Phone2]Execute AVG DPCCHECDP? to read the ECDP DPCCH measurement result.
- 47. [Phone2]Execute AVG_HSDPCCHECDP? to read the ECDP HS-DPCCH measurement result.
- 48. [Phone2]Execute AVG EDPCCHECDP? to read the ECDP E-DPCCH measurement result.
- 49. [Phone2]Execute AVG EDPDCH1ECDP? to read the ECDP E-DPDCH1 measurement result.
- 50. [Phone2]Execute AVG_DPCCHRCDE? to read the Relative Code Domain Error DPCCH measurement result.
- 51. [Phone2]Execute AVG_HSDPCCHRCDE? to read the Relative Code Domain Error HS-DPCCH measurement result.
- 52. [Phone2]Execute AVG_EDPCCHRCDE? to read the Relative Code Domain Error E-DPCCH measurement result.
- 53. [Phone2]Execute AVG_EDPDCH1RCDE? to read the Relative Code Domain Error E-DPDCH1 measurement result.
- 54. **[Phone2]**Confirm the Relative Code Domain Error is as follows. Relative Code Domain Error  $\leq -17.5$  dB, when -25.5 dB  $\leq$  ECDP and Relative Code Domain Error  $\leq -43.0 - ECDP$ , when -30 dB  $\leq ECDP \leq -25.5$  dB.
- 55. [Phone1]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 56. [Phone2]Execute TPCPAT ILPC to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 57. [Phone1]Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 58. [Phone2]Execute ILVL -18.0 to set [Input Level] to [-18.0] dBm.
- 59. Wait 150ms until the UE power becomes -18.0 dBm.
- 60. Repeat procedures 31to 54.

To measure Power/ HSUPA Throughput, OBW,SEM and ACLR measurement items should be turned off.

Sub-Test in Table C.11.1.4	Code	Nominal Code Domain Power	Spreading Factor	Nominal ECDP
	DPCCH	-13.4	256	-13.4
	HS-DPCCH	-7.4	256	-7.4
	E-DPCCH	-7.4	256	-7.4
1	E-DPDCH1	-7.4	2	-28.5
	E-DPDCH2	-7.4	2	-28.5
	E-DPDCH3	-9.4	4	-27.5
	E-DPDCH4	-9.4	4	-27.5

#### 3GPP TS 34.121 Table 5.13.2C.7: Nominal ECDP ratios

#### 3GPP TS34.121 Table 5.13.2C.8: Relative Code Domain Error test requirement, codes not using 16QAM

ECDP dB	Average Relative Code Domain Error dB
-22 < ECDP	≤ -17.5
-30 ≤ ECDP ≤ -22	≤ -39.5 - ECDP
ECDP < -30	No requirement

#### 3GPP TS34.121 Table 5.13.2C.9: Relative Code Domain Error test requirement, with 16QAM used

ECDP dB	Average Relative Code Domain Error dB
-25.5 < ECDP	≤ -17.5
-30 ≤ ECDP ≤ -25.5	≤ -43.0 - ECDP
ECDP < -30	No requirement

## 1.16.26. 5.13.5 In-band emission for DC-HSUPA

To connect with DC-HSUPA(QPSK), see 1.16.2 Connection with DC-HSUPA(QPSK).

#### [Sub-test 1]

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute PWR_MEAS ON to set [Power measurement] to [On].
- 10. [Phone1]Execute PWR_AVG 20 to set [Average Count] of Power measurement to [20] times.
- 11. **[Phone1]**Execute **EHICHPAT ACK** to set [E-HICH Pattern] to [ACK].
- 12. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 13. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 14. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 16. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 17. [Phone1]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 18. [Phone2]Execute ILVL -30.0 to set [Input Level] to [-30.0] dBm.
- 19. [Phone1]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 20. [Phone2]Execute TPCPAT ALLO to set [Power Control Bit Pattern] to [All0].
- 21. Wait 150ms until each uplink power reaches Maximum Power and Minimum Power.
- 22. [Phone1]Execute SWP to perform Power measurement.
- 23. [Phone1]Execute AVG_FILTPWR? to read the Power measurement result as Power1.
- 24. **[Phone1]**Execute **AVG_FILTPWR_S?** to read the Power measurement result as Power2. Confirm the measurement result (above Power2-Power1) is lower than -23.2 dB.

#### [Sub-test 2]

- 1. [Phone1]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 2. [Phone1]Execute MAXULPWR 21 to set [Maximum Allowed UL TX Power] to [21.0] dBm.
- 3. [Phone1]Execute TPCALGO 1 to set [TPC Algorithm] to [1].
- 4. [Phone1]Connect with DC-HSUPA(QPSK).
- 5. [Phone1]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 6. [Phone1]Execute OBW_MEAS OFF to set [Occupied Bandwidth measurement] to [Off].
- 7. [Phone1]Execute SMASK_MEAS OFF to set [Spectrum Emission Mask measurement] to [Off].
- 8. [Phone1]Execute ADJ_MEAS OFF to set [Adjacent Channel Power measurement] to [Off].
- 9. [Phone1]Execute PWR_MEAS ON to set [Power measurement] to [On].
- 10. [Phone1]Execute PWR_AVG 20 to set [Average Count] of Power measurement to [20] times.
- 11. [Phone1]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 12. [Phone1]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 13. [Phone2]Execute DDPCHTOFS 6 to set [DPCH Timing Offset] to [6].
- 14. [Phone2]Execute OLVL -86.0 to set [Output Level] to [-86.0dBm].
- 15. [Phone2]Execute EHICHPAT ACK to set [E-HICH Pattern] to [ACK].
- 16. [Phone2]Execute ABSGNTVAL 6 to set [Absolute Grant Value] to [6].
- 17. **[Phone1]**Execute **ILVL -30.0** to set [Input Level] to [-30.0] dBm.
- 18. [Phone2]Execute ILVL 35.0 to set [Input Level] to [+35.0] dBm.
- 19. [Phone1]Execute TPCPAT ALLO to set [Power Control Bit Pattern] to [All0].
- 20. [Phone2]Execute TPCPAT ALL1 to set [Power Control Bit Pattern] to [All1].
- 21. Wait 150 ms until each uplink power reaches Maximum Power and Minimum Power.
- 22. [Phone1]Execute SWP to perform Power measurement.
- 23. [Phone1]Execute AVG_FILTPWR_S? to read the Power measurement result as Power1.
- 24. **[Phone1]**Execute **AVG_FILTPWR?** to read the Power measurement result as Power2. Confirm the measurement result (above Power2-Power1) is lower than -23.2 dB.

To measure Power, OBW,SEM and ACLR measurement items should be turned off.

## 1.17. Others

## 1.17.1. Calibration

By using this function, level accuracy frequency between input level and output level can be set flat, and the level gap caused by internal temperature change can be calibrated.

A single equipment supports both Band Calibration (BANDCAL) and Full Calibration (FULLCAL).

Band Calibration is performed at W-CDMA band (UL: 824~849 MHz, 1710~1910 MHz, 1920~1980 MHz, DL: 869~894 MHz, 1805~1990 MHz, 2110~2170 MHz).

Full Calibration is performed at the input/output band of the equipment (30~2700 MHz).

Although Full Calibration includes the contents of the Band Calibration, it takes time. Full Calibration should be executed when the seasonal temperature changes greatly or software version is upgraded. In this case, aging must be executed for about 1 hour before calibration.

Band Calibration should be executed so that calibration is performed without temperature change.



#### 1.17.2. Dynamic Range

The equipment guarantees the measurement performance (linearity) from Input Level to –40 dB. To prevent input of excess levels (over +10 dB from Input Level), Input Level must be set according to each measurement so the measured power value is +5 to -40 dB from Input Level.

## 1.17.3. External Loss

The equipment supports setting of External Loss (such as cable loss) as offset values. External Loss is set at Main DL, Main UL and Aux.

Level			
Input Level	-10.0 dBm		
Output Level(Total)	-65.7 dBm	On	Level Continuous Off
AWGN Level	–20.0 dB	Off	
External Loss(Main DL)	0.0 dB	Off	
External Loss(Main UL)	0.0 dB	Off	
External Loss(Aux)	0.0 dB	Off	
External Loss Table	( 0)		

An example of how to set Main DL Loss to 3.0 dB and Main UL Loss to 5.0 dB is shown below.

- 1. Execute **DLEXTLOSSSW ON** to set [External Loss(Main DL)] to [On].
- 2. Execute **ULEXTLOSSW ON** to set [External Loss(Main UL)] to [On].
- 3. Execute **DLEXTLOSS 3.0** to set [External Loss(Main DL)] to [3.0] dB.
- 4. Execute **ULEXTLOSS 5.0** to set [External Loss(Main UL)] to [5.0] dB.

Although the above commands can set only one loss value for all frequencies, up to 100 loss values can be set by using the GPIB and by setting an External Loss Table, which supports both W-CDMA and GSM. In this case, a frequency without a loss value is the table is compensated with next loss value.

An example of how to set a 3.0 dB loss value for the 2140 MHz frequency, and a 5.0 dB loss value for the 1950 MHz frequency is shown below.

- 1. Execute **DLEXTLOSSW COMMON** to use the Main DL External Loss common table.
- 2. Execute **ULEXTLOSSW COMMON** to use the Main UL External Loss common table.
- 3. Execute LOSSTBLVAL 1950MHz, 0.0, 5.0, 0.0 to set the 1950 MHz Main UL Loss value to 5.0 dB.
- 4. Execute LOSSTBLVAL 2140MHz, 3.0, 0.0, 0.0 to set the 2140 MHz Main DL Loss value to 3.0 dB.

The number of frequency points specified in the table is displayed either in the on-screen External Loss Table, or can be read by executing LOSSTBLSAMPLE?.

All loss values can be deleted by executing **DELLOSSTBL**.

*The operation when setting External Loss differs according to the version.

Sometimes, the I/O level may be changed unexpectedly when setting parameters at tracking operation. After setting the measurement conditions (external loss, frequency, etc.), always set the I/O level before starting measurement (W/G, TDS only)

The specifications have been changed for version V20.00 and later so the I/O level does not change when changing the external loss and frequency settings.

## 1.17.4. Synchronization of Control PC and the equipment

Sometimes, when sending continuous GPIB commands from the PC controller to the equipment, commands are buffered and time is required to execute them. In this case, the command process can be checked at the equipment by executing a query (such as **ESR**?).

Using the example of RSSI measurement at calibration, the RSSI value is read at the UE after changing the equipment Output Level. In this case, the equipment control and measurement value reading must be synchronized as follows.

- 1. Set channel etc.
- 2. Execute OLVL -90.0 to set [Output Level] to [-90.0] dBm.
- 3. Execute **ESR?** and wait the response.
- 4. Wait until RSSI measurement ends.
- 5. Obtain the RSSI value from the UE.

When controlling Phone 1 and Phone 2 simultaneously using Parallelphone, the processing of one phone might be kept waiting by processing for the other phone. Therefore, a query should be sent after sending commands and then waiting for a response.

#### 1.17.5. Speeding-up Control Software

#### 1. Screen Off

The easiest way to speed up the control software is to turn off the equipment screen. The screen can be turned off by executing **SCREEN OFF.** 

#### 2. Setting Video Filter Length

When measuring at the Time Domain Measurement screen, the control software can be speeded up by setting the Video Filter Length to the minimum value (0.1 µs (**VFILTLEN 0.1US**)). The Video Filter Length setting only affects waveforms, not the Slot list measurement result.

Measurement Object Trigger Source Time Soan	Entry 0.1 us Min : 0.1 to Max : 1066.7
Video Filter Length	10.0 us
Trigger Delay	0.0000 ms
Display Offset	10 dB

#### 3. Band Calibration based on change of internal temperature

The equipment evaluates whether to perform Band Calibration by checking the internal temperature. Band calibration is performed when the internal temperature change exceeds the specified temperature.

When executing **BANDCAL_TEMP 2.0**, band calibration is performed when the internal temperature changes more than 2.0°C compared to the previous temperature. In addition, band calibration is always performed when the equipment is first turned on.

# 2. GSM Measurement Software

# 2.1. Specification

# 2.1.1. MT8820B/20C software specification

Item	Specifications			
Electrical characteristics	Typical values (typ.) are or	nly for reference and are not guaranteed.		
Frequency/	Frequency	300 to 2700 MHz		
Modulation	Input level	–30 to +40 dBm		
measurement		(Average power in bursts, Main connector)		
	Carrier frequency accurac	Carrier frequency accuracy		
		±(Set frequency × Reference oscillator accuracy +		
		10 Hz), (when measuring Normal Burst)		
		±(Set frequency × Reference oscillator accuracy +		
		20 Hz), (when measuring RACH)		
	Residual phase error	≤0.5° (rms), 2° (peak)		
	Measurement object	Normal Burst, RACH		
Amplitude	Frequency	300 to 2700 MHz		
measurement	Input level	–30 to +40 dBm		
		(Average power in bursts, Main connector)		
	Measurement accuracy	MT8820B/15B		
		±0.5 dB (–20 to +40 dBm),		
		$\pm 0.7$ dB (–30 to –20 dBm), after calibration		
		MT8820C		
		±0.5 dB (-20 to +40 dBm),		
		typ. $\pm 0.3 \text{ dB} (-20 \text{ to } +40 \text{ dBm}),$		
		$\pm$ 0.7 dB (-30 to -20 dBm)		
	Linearthy	alter calibration, to to $40^{\circ}$ C		
	Linearity	$\pm 0.2 \text{ dB} (-40 \text{ to } 0 \text{ dB}, \ge -30 \text{ dB} \text{ m})$		
	Measurement range of po	ower when Carrier off		
		$\geq 00 \text{ up } (\geq -10 \text{ up III}),$ >45 dB (> 20 to 10 dBm)		
	Purst waya viaw			
	Monsurament object	Normal Purst DACH		
	measurement object	NUTTIAL DUISL, KACH		

Table 2.1.1-1 Specifications for MX882001C GSM Measurement Software

Item		Specifications
Output Spectrum	Frequency	300 to 2700 MHz
measurement	Input level	–10 to +40 dBm
(Output RF Spectrum)		(Average power in bursts, Main connector)
	Measurement point	±100 kHz, ±200 kHz, ±250 kHz, ±400 kHz,
		±600 KHZ, ±800 KHZ, ±1000 KHZ, ±1200 KHZ,
	Moncurement range of	±1400 KHZ, ±1600 KHZ, ±1800 KHZ, ±2000 KHZ
	Measurement range o	Averaged over 10 measurements
		<-55 dB (<250 kHz offset)
		<-66 dB (>400 kHz offset)
	Measurement range o	of transient
		$\leq$ -57 dB ( $\geq$ 400 kHz offset)
	Measurement object	Normal Burst
RF signal generator	Output frequency	300 to 2700 MHz, 1 Hz steps
	Output pattern	CCH, TCH, CCH+TCH
	Channel coding	FS, EFS, HS0, HS1, AFS, AHS0, AHS1, CS-1, CS-2,
		CS-3, CS-4
	TCH data	PN9, PN15, All0, All1
		Fixed Pattern (PAT0 to PAT9)
	USF	0 to 7(GPRS)
Error rate	Function	Measures error rate of frame, bit, and CRC
measurement	Measurement object	<ul> <li>Loopback data on uplink TCH</li> </ul>
		<ul> <li>Serial data input from the Call Proc. I/O connector on the rear panel</li> </ul>
		Number of received blocks by terminal on uplink
		TCH via GPRS
		Number of received USF blocks by terminal via
		GPRS
Call processing	Call control	Location registration, call origination, call
		termination, network-side termination, UE-side
		termination connection, termination, and data
		transfer via GPRS
	UE control	Output level, time slot, timing advance, loopback on/off, GPRS test mode
	Channel coding	FS, EFS, HS0, HS1, AFS, AHS0, AHS1, CS-1, CS-2, CS-3, CS-4
	Frequency band	GSM450, GSM480, GSM850, P-GSM, E-GSM, R-GSM, GSM710, T-GSM810, GSM750, DCS1800, PCS1900

# Table 2.1.1-1 Specifications for MX882001C GSM Measurement Software (Cont'd)

Item		Specifications			
Function	End-to-end communica MT8820C and UE. Encod voice to AF Output. Enco Output. Measure the vo	tions test between a handset connected to the de the voice from Audio Input, Output the decoded ode the tone signal and Output the tone signal to AF ice signal from AF Input and decoded voice signal.			
Voice codec	GSM_EFR, GSM_AMR				
Codec level control	Encoder input gain Handset microphone vo	–3.00 to +3.00 dB, 0.01 dB steps plume 0, 1, 2, 3, 4, 5			
	Handset speaker volum	e 0. 1. 2. 3. 4. 5			
AF output	Frequency range Accuracy	30 Hz to 10 kHz, Resolution 1 Hz ±(Set frequency × Reference oscillator accuracy + 0.1 Hz)			
	Level setting range Setting resolution	0 to 5 V peak (AF Output connector) 1 mV (≤5 V peak), 100 μV (≤500 mV peak), 10 μV (≤50 mV peak)			
	Accuracy	±0.2 dB (≥10 mV peak, ≥50 Hz), ±0.3 dB (≥10 mV peak, <50 Hz)			
	Waveform distortion	≤–60 dB (≥500 mV peak, ≤5 kHz), ≤–54 dB (≥70 mV peak)			
	Output impedance Max. output current	≤1 Ω 100 mA			
AF input	Frequency range	50 Hz to 10 kHz			
	Input level range	1 mV peak to 5 V peak (AF Input connector)			
	Maximum input level	30 V rms			
	Input impedance	100 kΩ			
	Frequency measuremer	nt accuracy ± (Reference oscillator accuracy + 0.5 Hz)			
	Level measurement acc	uracy ±0.2 dB (≥10 mV peak), ±0.4 dB (≥1 mV peak, ≥1 kHz)			
	SINAD measurement	Frequency at 1 kHz ≥60 dB (≥1000 mV peak), ≥54 dB (>50 mV peak), ≥46 dB (≥10 mV peak)			
	Distortion measuremen	It Frequency at 1 kHz $\leq$ -60 dB (≥1000 mV peak), $\leq$ -54 dB (>50 mV peak), $\leq$ -46 dB (>10 mV peak)			

Item	Specifications
Function	Transferring the packet data between UE and a server connecting to Ethernet port (10BT) on the MT8820C.
Channel coding	CS-1, CS-2, CS-3, CS-4

## Table 2.1.1-3 Specifications for MX882001C-002 GSM External Packet Data

## Table 2.1.1-4Specifications for MX882001C-005 GSM A-GPS

Item	Specifications
Function	A-GPS tests defined in the 3GPP specifications

## Table 2.1.1-5 Specifications for MX882001C-011 EGPRS Measurement Software

Item		Specifications	
Function	This can be used to meas	ure the performance (Tx, Rx) of UE for EGPRS.	
Electrical characteristics	Typical values (typ.) are o	nly for reference and are not guaranteed.	
Frequency/Modulati	Frequency	Same as MX882001C	
on measurement	Input level	Same as MX882001C	
	Carrier frequency accura	Cy	
		Same as MX882001C	
	Residual phase error	Same as MX882001C	
	Residual EVM (8PSK)	≤1.5% (rms)	
	Measurement object	Normal Burst (GMSK, 8PSK), RACH	
Amplitude	Frequency	Same as MX882001C	
measurement	Input level	Same as MX882001C	
	Measurement accuracy	Same as MX882001C	
	Linearity	Same as MX882001C	
	Measurement range of p	ower when Carrier off	
		Same as MX882001C	
	Burst wave view	Same as MX882001C	
	Measurement object	Normal Burst (GMSK, 8PSK), RACH	
Output Spectrum	Frequency	Same as MX882001C	
measurement	Input level	Same as MX882001C	
(Output RF Spectrum)	Measurement point	Same as MX882001C	
	Measurement range of modulation		
		Same as MX882001C	
	Measurement range of tr	ansient	
		Same as MX882001C	
	Measurement object	Normal Burst (GMSK, 8PSK)	

Item		Specifications
RF signal generator	Output frequency	Same as MX882001C
	Phase error (GMSK)	Same as MX882001C
	Modulation accuracy (8	3PSK)
		≤3% (rms)
	Output pattern	CCH, TCH, CCH+TCH
	Coding scheme	MCS-1, MCS-2, MCS-3, MCS-4, MCS-5, MCS-6, MCS-7, MCS-8, MCS-9
	Puncturing scheme	P1, P2, P3
	TCH data	PN9, PN15, All0, All1
		Fixed pattern (PAT0 to PAT9)
Error rate	Function	Measures bit error rate.
measurement	Measurement object	<ul> <li>Loopback data on uplink TCH(GMSK, 8PSK)</li> </ul>
		<ul> <li>Number of received blocks by terminal on uplink TCH via EGPRS</li> </ul>
		<ul> <li>Number of received USF blocks by terminal via EGPRS</li> </ul>
Call processing	Call control	Location registration, connection, termination, and data transfer via EGPRS
	UE control	Output level, time slot, timing advance, EGPRS test mode
	Coding scheme	MCS-1, MCS-2, MCS-3, MCS-4, MCS-5, MCS-6, MCS-7, MCS-8, MCS-9
	Puncturing scheme	P1, P2, P3

# Table 2.1.1-5 Specifications for MX882001C-011 EGPRS Measurement Software (Cont'd)

## 2.1.2. MT8821C software specification

Item		Specifications	
Electrical characteristics	Typical values (typ.) are on	ly for reference and are not guaranteed.	
Frequency/Modulation	Frequency	350 to 2700 MHz	
measurement		For the frequencies below 500 MHz, only the following range meets the specifications:	
		380.2 to 389.8 MHz (Band T-GSM380)	
		410.2 to 419.8 MHz (Band T-GSM410)	
		450.4 to 457.6 MHz (Band GSM450)	
		478.8 to 486 MHz (Band GSM480)	
	Input level	–30 to +40 dBm (Average power in bursts, Main connector)	
	Carrier frequency accurac	у	
		±(Set frequency × Reference oscillator accuracy + 1 Hz), (when measuring Normal Burst)	
		±(Set frequency × Reference oscillator accuracy + Hz), (when measuring RACH)	
	Residual phase error	≤0.5° (rms), 2° (peak)	
	Measurement object	Normal Burst, RACH	
Amplitude	Frequency	350 to 2700 MHz	
measurement		For the frequencies below 500 MHz, only the following range meets the specifications:	
		380.2 to 389.8 MHz (Band T-GSM380)	
		410.2 to 419.8 MHz (Band T-GSM410)	
		450.4 to 457.6 MHz (Band GSM450)	
		478.8 to 486 MHz (Band GSM480)	
	Input level	–30 to +40 dBm	
		(Average power in bursts, Main connector)	
	Measurement accuracy	±0.5 dB (–30 to +40 dBm), typ. ±0.3 dB (–30 to +40 dBm) after calibration, 10 to 40°C	
	Linearity	±0.2 dB (–40 to 0 dB, ≥–30 dBm)	
	Measurement range of po	ower when Carrier off ≥65 dB (≥–10 dBm), ≥45 dB (≥–30 to –10 dBm)	
	Burst wave view	Rise, Fall, Slot, On-interval	
	Measurement object	Normal Burst, RACH	

## Table 2.1.2-1 Specifications for MX882101C GSM Measurement Software

Item		Specifications
Output Spectrum measurement (Output RF Spectrum)	Frequency	350 to 2700 MHzFor the frequencies below 500 MHz, only the following range meets the specifications:380.2 to 389.8 MHz(Band T-GSM380)410.2 to 419.8 MHz(Band T-GSM410)450.4 to 457.6 MHz(Band GSM450)478.8 to 486 MHz(Band GSM480)
	Input level	–10 to +40 dBm (Average power in bursts, Main connector)
	Measurement point	±100 kHz, ±200 kHz, ±250 kHz, ±400 kHz, ±600 kHz, ±800 kHz, ±1000 kHz, ±1200 kHz, ±1400 kHz, ±1600 kHz, ±1800 kHz, ±2000 kHz
	Measurement range of m	odulation Averaged over 10 measurements ≤–55 dB (≤250 kHz offset) ≤–66 dB (≥400 kHz offset)
	Measurement range of tr	nsient ≤–57 dB (≥400 kHz offset)
	Measurement object	Normal Burst
RF signal generator	Output frequency Output pattern Channel coding TCH data	350 to 2700 MHz, 1 Hz steps CCH, TCH, CCH+TCH FS, EFS, HS0, HS1, AFS, AHS0, AHS1, CS-1, CS-2, CS-3, CS-4 PN9, PN15, All0, All1 Eixed Pattern (PAT0 to PAT9)
	USF	0 to 7 (GPRS)
Error rate measurement	Function Measurement object • •	Measures error rate of frame, bit, and CRC Loopback data on uplink TCH Serial data input from the Call Proc. I/O connector on the rear panel Number of received blocks by terminal on uplink TCH via GPRS Number of received USF blocks by terminal via GPRS
Call processing	Call control	Location registration, call origination, call termination, network-side termination, UE-side termination connection, termination, and data transfer via GPRS
	UE control	Output level, time slot, timing advance, loopback on/off, GPRS test mode
	Channel coding	FS, EFS, HS0, HS1, AFS, AHS, CS-1, CS-2, CS-3, CS-4
	Frequency band	GSM450, GSM480, GSM850, P-GSM, E-GSM, R-GSM, GSM710, T-GSM810, GSM750, DCS1800, PCS1900

# Table 2.1.2-1 Specifications for MX882101C GSM Measurement Software (Cont'd)

# Table 2.1.2-2Specifications for MX882101C-001 GSM Voice Codec

Item		Specifications
Function	End-to-end communication and UE. Encode the voice f Output. Encode the tone si Measure the voice signal fi	ns test between a handset connected to the MT8821C rom Audio Input, Output the decoded voice to AF ignal and Output the tone signal to AF Output. rom AF Input and decoded voice signal.
Voice codec	GSM_EFR, GSM_AMR	
Codec level control	Encoder input gain Handset microphone volu	-3.00 to +3.00 dB, 0.01 dB steps
	Handset speaker volume	0, 1, 2, 3, 4, 5
AF output	Frequency range Accuracy	30 Hz to 10 kHz, Resolution 1 Hz ±(Setting Frequency × Reference oscillator accuracy + 0.1 Hz)
	Level setting range Setting resolution	0 to 5 V peak (AF Output connector) 1 mV (≤5 V peak), 100 μV (≤500 mV peak), 10 μV (≤50 mV peak)
	Accuracy	$\pm 0.2 \text{ dB}$ (≥10 mV peak, ≥50 Hz), $\pm 0.3 \text{ dB}$ (≥10 mV peak, <50 Hz)
	waveform distortion	$\leq$ -50 dB ( $\geq$ 50 mV peak, $\leq$ 5 kH2), $\leq$ -54 dB ( $\geq$ 70 mV peak)
	Output impedance	≤1 Ω
	Max. output current	100 mA
AF input	Frequency range	50 Hz to 10 kHz
	Input level range	1 mV peak to 5 V peak (AF Input connector)
	Maximum input level	30 V rms
	Input impedance	100 kΩ
	Frequency measurement	accuracy ± (Reference oscillator accuracy + 0.5 Hz)
	Level measurement accur	facy ±0.2 dB (≥10 mV peak), ±0.4 dB (≥1 mV peak, ≥1 kHz)
	SINAD measurement	Frequency at 1 kHz ≥60 dB (≥1000 mV peak), ≥54 dB (>50 mV peak), ≥46 dB (≥10 mV peak)
	Distortion measurement	Frequency at 1 kHz ≤–60 dB (≥1000 mV peak), ≤–54 dB (>50 mV peak), ≤–46 dB (≥10 mV peak)

Item	Specifications		
Function	Transferring the packet data between UE and a server connecting to Ethernet port (10BT) on the MT8821C.		
Channel coding	CS-1, CS-2, CS-3, CS-4		
Table 2.1.2-4Specifications for MX882101C-005 GSM A-GPS			
Item	Specifications		
Function	A-GPS tests defined in the 3GPP specifications		

## Table 2.1.2-3 Specifications for MX882101C-002 GSM External Packet Data

## Table 2.1.2-5 Specifications for MX882101C-011 EGPRS Measurement Software

Item		Specifications
Function	This can be used to measu	ure the performance (Tx, Rx) of UE for EGPRS.
Electrical characteristics	Typical values (typ.) are or	nly for reference and are not guaranteed.
Frequency/Modulation measurement	Frequency Input level Carrier frequency accura Residual phase error	Same as MX882101C Same as MX882101C cy Same as MX882101C Same as MX882101C
	Residual EVM (8PSK) Measurement object	≤1.5% (rms) Normal Burst (GMSK, 8PSK), RACH
Amplitude measurement	Frequency Input level Measurement accuracy Linearity Measurement range of p Burst wave view Measurement object	Same as MX882101C Same as MX882101C Same as MX882101C Same as MX882101C ower when Carrier off Same as MX882101C Same as MX882101C Normal Burst (GMSK, 8PSK), RACH
Output Spectrum measurement (Output RF Spectrum)	Frequency Input level Measurement point Measurement range of n Measurement range of the	Same as MX882101C Same as MX882101C Same as MX882101C nodulation Same as MX882101C ransient Same as MX882101C Normal Burst (GMSK, 8PSK)

Item		Specifications
RF signal generator	Output frequency	Same as MX882101C
	Phase error (GMSK)	Same as MX882101C
	Modulation accuracy (8	;PSK) ≤3% (rms)
	Output pattern	CCH, TCH, CCH+TCH
	Coding scheme	MCS-1, MCS-2, MCS-3, MCS-4, MCS-5, MCS-6, MCS-7, MCS-8, MCS-9
	Puncturing scheme	P1, P2, P3
	TCH data	PN9, PN15, All0, All1 Fixed pattern (PAT0 to PAT9)
Error rate	Function	Measures bit error rate.
measurement	Measurement object	<ul> <li>Loopback data on uplink TCH(GMSK, 8PSK)</li> <li>Number of received blocks by terminal on uplink TCH via EGPRS</li> </ul>
		<ul> <li>Number of received USF blocks by terminal via EGPRS</li> </ul>
Call processing	Call control	Location registration, connection, termination, and data transfer via EGPRS
	UE control	Output level, time slot, timing advance, EGPRS test mode
	Coding scheme	MCS-1, MCS-2, MCS-3, MCS-4, MCS-5, MCS-6, MCS-7, MCS-8, MCS-9
	Puncturing scheme	P1, P2, P3
	Frequency band	GSM450, GSM480, GSM850, P-GSM, E-GSM, R-GSM, GSM710, T-GSM810, GSM750, DCS1800, PCS1900

# Table 2.1.2-5 Specifications for MX882101C-011 EGPRS Measurement Software (Cont'd)

# 2.2. 3GPP Measurement Specification Table

	Item	Comment	
12	Transceiver		
12.1	Conducted spurious emissions	Requires SPA	$\checkmark$
12.2	Radiated spurious emissions	Requires SPA	$\checkmark$
12.3	Conducted spurious emissions for MS supporting R-GSM frequency band	Requires SPA	$\checkmark$
12.4	Radiated spurious emissions for MS supporting R-GSM frequency band	Requires SPA	$\checkmark$
13	Transmitter		$\backslash$
13.1	Frequency error and phase error		$\sqrt{}$
13.2	Frequency error under multipath and interference conditions	Requires Fading Simulator	$\checkmark$
13.3	Transmitter output power and burst timing		$\sqrt{}$
13.4	Output RF spectrum		$\sqrt{}$
13.6	Frequency error and phase error in HSCSD multi-slot configurations		-
13.7	Transmitter output power and burst timing in HSCSD configurations		-
13.8	Output RF spectrum in HSCSD multislot configuration		-
13.9	Output RF spectrum for MS supporting the R-GSM band		$\sqrt{}$
13.16	GPRS Transmitter tests		
13.16.1	Frequency error and phase error in GPRS multi-slot configuration		$\sqrt{}$
13.16.2	Transmitter output power in GPRS multi-slot configuration	up to 2UL	$\sqrt{\sqrt{1}}$
13.16.3	Output RF spectrum in GPRS multi-slot configuration	1UL only	$\sqrt{}$
13.17	EGPRS Transmitter tests	without Call Processing	$\square$
13.17.1	Frequency error and modulation accuracy in EGPRS configuration		$\sqrt{\sqrt{1}}$
13.17.2	Frequency error under multipath and interference conditions	Requires Fading Simulator	$\checkmark$
13.17.3	EGPRS Transmitter output power	up to 2UL	$\sqrt{}$
13.17.4	Output RF spectrum in EGPRS configuration	1UL only	$\sqrt{}$

 $\sqrt{1}$ : Supported (except Frequency Hopping) |  $\sqrt{1}$ : Requires external equipment (SPA or SG) | F: Future Support | -: Not Supported

	Item	Comment	
14	Receiver		$\searrow$
14.1	Bad frame indication		
14.1.1	Bad frame indication - TCH/FS		-
14.1.2	Bad frame indication - TCH/HS		-
14.1.3	Bad frame indication - TCH/FS – Frequency hopping and downlink		-
	DTX - Phase 2 MS in a phase 1 network		
14.1.4	Bad frame indication - TCH/HS – Frequency hopping and downlink		-
	DTX - Phase 2 MS in phase 1 network		
14.1.5	Bad frame indication - TCH/AFS (Speech frame)		_
14.1.6	Bad frame indication - TCH/AHS		-
14.1.6.1	Bad frame indication - TCH/AHS - Random RF input		-
14.2	Reference sensitivity		$\searrow$
14.2.1	Reference sensitivity - TCH/FS	Static conditions	$\sqrt{\sqrt{1}}$
		Propagation conditions	
		(Requires Fading Simulator)	
14.2.2	Reference sensitivity - TCH/HS (Speech frames)	Propagation conditions	$\checkmark$
1422		(Requires Fading Simulator)	
14.2.3	Reference sensitivity - FACCH/F		-
14.2.4	Reference sensitivity - FACCH/H		-
14.2.5			-
14.2.6		Static conditions	-
14.2.7	Reference sensitivity - TCH/EFS	Propagation conditions	NN ./
		(Requires Fading Simulator)	N
14.2.8	Reference sensitivity - full rate data channels in multi-slot		-
	configuration		
14.2.9	Reference sensitivity - TCH/FS for MS supporting the R-GSM band	Static conditions	$\sqrt{\sqrt{1}}$
		Propagation conditions	$\checkmark$
44240		(Requires Fading Simulator)	11
14.2.10	Reference sensitivity - TCH/AFS	Propagation conditions	NN /
		(Requires Fading Simulator)	γ
14.2.18	Reference sensitivity - TCH/AHS	Static conditions	$\sqrt{\sqrt{1}}$
		Propagation conditions	
		(Requires Fading Simulator)	
14.2.19	Reference sensitivity - TCH/AFS-INB		-
14.2.20	Reference sensitivity - TCH/AHS-INB		-
14.3	Usable receiver input level range	Static conditions	$\sqrt{\sqrt{1}}$
		Propagation conditions (Requires Fading Simulator)	$\checkmark$

 $\sqrt{1}$ : Supported (except Frequency Hopping) |  $\sqrt{1}$ : Requires external equipment (SPA or SG) | F: Future Support | -: Not Supported

	Item	Comment	
14.4	Co-channel rejection		
14.4.1	Co-channel rejection - TCH/FS	Requires Fading Simulator Requires SG	V
14.4.2	Co-channel rejection - TCH/HS	Requires Fading Simulator Requires SG	V
14.4.3	Co-channel rejection - TCH/HS (SID frames)		-
14.4.4	Co-channel rejection – FACCH/F		-
14.4.5	Co-channel rejection – FACCH/H		-
14.4.6	Co-channel rejection - TCH/EFS	Requires Fading Simulator Requires SG	$\checkmark$
14.4.7	Receiver performance for frequency hopping and co-channel interference on one carrier		-
14.4.8	Co-channel rejection - TCH/AFS	Requires Fading Simulator Requires SG	$\checkmark$
14.4.16	Co-channel rejection - TCH/AHS	Requires Fading Simulator Requires SG	V
14.4.17	Co-channel rejection - TCH/AFS-INB		-
14.4.18	Co-channel rejection - TCH/AHS-INB		_
14.5	Adjacent channel rejection		
14.5.1	Adjacent channel rejection – speech channels	Requires Fading Simulator Requires SG	$\checkmark$
14.5.2	Adjacent channel rejection – control channels		-
14.6	Intermodulation rejection		$\backslash$
	(+800 kHz unwanted CW signals transmit)		
	(+1600 kHz unwanted modulation signals transmit)		
14.6.1	Intermodulation rejection – speech channels	Requires SG	
14.6.2	Intermodulation rejection – control channels		_
14./	Blocking and spurious response		
14.7.1	Blocking and spurious response – speech channels	Requires SG	N
14.7.2	Biocking and spurious response – control channels	Deguines CC	_
14.7.3	supporting R-GSM band	Requires SG	N
14.7.4	Blocking and spurious response – control channels for MS supporting R-GSM band		-
14.8	AM Suppression		
14.8.1	AM suppression - speech channels	Requires External SG	
14.8.2	AM suppression - control channels		-
14.9	Paging performance at high input levels		_
14.10	Performance of Codec Mode Request Generation for Adaptive Multi-Rate Codecs		$\backslash$
14.10.1	Performance of Codec Mode Request Generation – TCH/AFS		-
14.10.2	Performance of Codec Mode Request Generation – TCH/AHS		_
14.16	GPRS Receiver tests		$\square$
14.16.1	Minimum Input level for reference performance	Static conditions	$\sqrt{}$
		Propagation conditions (Requires Fading Simulator)	V
14.16.2	Co-channel rejection		$\sum$
14.16.2.1	Co-channel rejection for packet channels	Static conditions	$\sqrt{}$
		Propagation conditions (Requires Fading Simulator)	$\checkmark$
14.16.3	Acknowledged mode/Downlink TBF/I_LEVEL measurement report		-

 $\sqrt{1}$ : Supported (except Frequency Hopping) |  $\sqrt{1}$ : Requires external equipment (SPA or SG) | F: Future Support | -: Not Supported

	Item	Comment	
14.18	EGPRS Receiver tests		$\overline{\ }$
14.18.1	Minimum input level for reference performance	Static conditions	$\sqrt{\sqrt{1}}$
		Propagation conditions	$\checkmark$
		(Requires Fading Simulator)	
14.18.2	Co-channel rejection	Static conditions	$\checkmark$
		(Requires SG)	
		Propagation conditions	$\checkmark$
		(Requires SG and Fading	
		Simulator)	
14.18.3	Adjacent channel rejection	Static conditions	$\checkmark$
		(Requires SG)	
		Propagation conditions	$\checkmark$
		(Requires SG and Fading	
		Simulator)	
14.18.4	Intermodulation rejection	Static conditions	$\checkmark$
		(Requires SG)	
		Propagation conditions	$\checkmark$
		(Requires SG and Fading	
		Simulator)	
14.18.5	Blocking and spurious response	Requires SG	$\checkmark$
14.18.6	EGPRS Usable receiver input level range	Static conditions	$\sqrt{}$
		Propagation conditions	$\checkmark$
		(Requires Fading Simulator)	
14.18.7	Incremental redundancy performance		-

 $\sqrt{1}$ : Supported (except Frequency Hopping) |  $\sqrt{1}$ :Requires external equipment (SPA or SG) | F: Future Support | -: Not Supported

# 2.3. TRX Measurement (GSM)

## 2.3.1. Connection with GSM

Measurement is executed after connecting UE in the loopback state.

The UE location registration can be stopped by turning on Auto Registration inside the registered network. If location registration is unnecessary, turn on Auto Registration (**AUTOREG ON**) before turning on the UE power.

- 1. Execute **PRESET** to preset parameter.
- 2. Turn on the UE.
- 3. Execute CALLRSLT? 4 and wait until it becomes 1,0 (Registration Execute).
- 4. Execute CALLSTAT? and wait until it becomes1 (= Idle(Regist).
- 5. Execute CALLSA to connect with Voice Call.
- 6. Execute **CALLSTAT?** and wait until it becomes 7 (= Communication).
- 7. Execute LOOPBACK ON to make UE in Loopback state.

#### 2.3.2. Disconnection from GSM

- 1. Execute LOOPBACK OFF to set UE to normal connection state.
- 2. Execute **CALLSO** to disconnect from Voice Call.
- 3. Execute CALLSTAT? and wait until it becomes1 (= Idle(Regist)).

#### 2.3.3. Changing TCH Channel and MS Power Level at Handover

Usually, Tx/Rx measurement is performed at three frequency points, and Tx measurement is performed with three power levels (L, M, H). In this case, the channel can be quickly switched without reconnection by switching it at handover with a higher output level. When a GPIB command is sent during handover, it waits until handover ends.

- 1. Execute CHMSPWR 1,5 to change [TCH Channel] to [1] CH, [MS Power Level] to [5].
- 2. Perform TRX measurement.
- 3. Execute CHMSPWR 1,12 to change [TCH Channel] to [1] CH, [MS Power Level] to [12].
- 4. Perform TX measurement.
- 5. Execute CHMSPWR 1,19 to change [TCH Channel] to [1] CH, [MS Power Level] to [19].
- 6. Perform TX measurement.
- 7. Execute CHMSPWR 63,5 to change [TCH Channel] to [63] CH, [MS Power Level] to [5].
- 8. Perform TRX measurement.
- 9. Execute CHMSPWR 63,12 to change [TCH Channel] to [63] CH, [MS Power Level] to [12].
- 10. Perform TX measurement.
- 11. Execute CHMSPWR 127,19 to change [TCH Channel] to [63] CH, [MS Power Level] to [19].
- 12. Perform TX measurement.
- 13. Execute CHMSPWR 127,5 to change [TCH Channel] to [127] CH, [MS Power Level] to [5].
- 14. Perform TRX measurement.
- 15. Execute CHMSPWR 127,12 to change [TCH Channel] to [127] CH, [MS Power Level] to [12].
- 16. Perform TX measurement.
- 17. Execute CHMSPWR 127,19 to change [TCH Channel] to [127] CH, [MS Power Level] to [19].
- 18. Perform TX measurement.

## 2.3.4. Band Indicator

The Band Indicator setting is required to separate ARFCN duplication. Set DCS1800 or PCS1900 at handover.

- 1. Execute **BAND GSM850** to change TCH [Band] to [GSM850].
- 2. Connect the UE.
- Execute BANDIND DCS1800 to change [Band Indicator] to [DCS1800].
   (This information report parameter takes time to reflect the change at the UE).
- 4. Execute **SYSCMB DCS1800** to change [System Combination] to [GSM/DCS1800].
- 5. Execute **BAND DCS1800** to change TCH [Band] to [DCS1800].
### 2.3.5. 13.1 Frequency error and phase error

- 1. Connect using Loopback.
- 2. Execute MOD_MEAS ON to set [Modulation Analysis] measurement to [On].
- 3. Execute MOD_COUNT 60 to set [Average Count] of Modulation Analysis measurement to [60] times.
- 4. Execute **SWP** to perform Modulation Analysis measurement.
- 5. Execute MAX_CARRFERR? PPM to read the Maximum Frequency Error measurement result.
- 6. Execute **MIN_CARRFERR? PPM** to read the Minimum Frequency Error measurement result.
- 7. Confirm the measurement result is lower than 0.1 ppm.
- 8. Execute MAX_PHASEERR? to read the RMS Phase Error measurement result.
- 9. Confirm the measurement result is lower than 5 deg.
- 10. Execute MAX_PPHASEERR? to read the Peak Phase Error measurement result.
- 11. Execute **MIN_PPHASEERR?** to read the Peak Phase Error measurement result.
- 12. Confirm the measurement result is lower than 20 deg.

#### Use the Max and Min measurement result for measurement with symbols (such as Frequency Error).

Modulation Analysis View			(Meas, C	ount :	60/	60)	
Carrier Frequency	Avg. 890.199	995 MHz					
	Avg.	Max	Min				
Cannier Frequency Error	-0.0046	0.0008	-0.0098	kHz			
	-0.01	0.00	-0.01	ppm			
RMS Phase Error	1.34	1.48	1.20	deg.(nms)			
Peak Phase Error	0.13	5.22	-5.28	deg.			ł
Magnitude Error	0.34	0.36	0.33	%(rms)			

## 2.3.6. 13.3 Transmitter output power and burst timing

- 1. Connect using Loopback.
- 2. Execute PWR_MEAS ON to set [Power Measurement] to [On].
- 3. Execute **TEMP_MEAS ON** to set [Template] measurement to [On].
- 4. Execute **PWR_COUNT 60** to set [Average Count] of Power Measurement to [60] times.
- 5. Execute **PWR_TEMPSTD** to set Template Judgment Lines to the standard matching the Channel and MS Power Level.
- 6. Execute **SWP** to perform Power measurement.
- 7. Execute **AVG_TXPWR?** to read the Power measurement result.
- 8. Execute **AVG_PWRTEMP?** to read the Template measurement result.
- 9. Confirm the measurement result is PASS.

Power Measurement <mark>View</mark>			(Meas, Cou	int :	60/	60)	
	Avg.	Max	Min				
TX Power	33.03	33.04	33.02	dBm			
Carrier Off Power	-41.65	-41.22	-42.23	dBm			
On/Off Ratio	74.68	75.26	74.26	dB			
Power Flatness Max Power	0.11	0.12	0.09	dB			
Power Flatness Min Power	-0.12	-0.08	-0.16	dB			
Time Alignment	-0.20	-0.14	-0.25	bit			

Template View			(Meas. Count :	60/	60) 🔳
	Avg.	Max	Min		
Template	Pass	Pass	Pass		

## 2.3.7. 13.4 Output RF spectrum

- 1. Connect using Loopback.
- 2. Execute **ORFSMD_MEAS ON** to set [Output RF Spectrum Modulation] measurement to [On].
- 3. Execute **ORFSSW_MEAS ON** to set [Output RF Spectrum Switching] measurement to [On].
- 4. Execute **ORFSMD_COUNT 60** to set [Average Count] of Output RF Spectrum Modulation measurement to [60] times.
- 5. Execute **ORFSSW_COUNT 60** to set [Average Count] of Output RF Spectrum Switching measurement to [60] times.
- 6. Execute **SWP** to perform Output RF Spectrum measurement.
- 7. Execute **ORFSMD_JUDGE?** to read the Output RF Spectrum Modulation measurement results.
- 8. Confirm the measurement result is PASS.
- 9. Execute AVG_LMODPWR? OF1800 to read the Output RF Spectrum Modulation(Frequency Offset +1800 kHz) measurement result.
- 10. Execute AVG_UMODPWR? OF1800 to read the Output RF Spectrum Modulation(Frequency Offset –1800 kHz) measurement result.

*The PASS/FAIL criterion for ORFS Switching measurement is different between the MT8820C/MT8821C and 3GPP TS 51.010-1.

The MT8820C/MT8821C evaluates from all points of 0 to 2000 kHz, whereas 3GPP TS 51.010-1 evaluates from points 400, 600, 1200, and 1800 kHz.

When using the MT8820C/MT8821C judgment result, go to section 2.3.7.1 ORFS Switching measurement: When using MT8820C/MT8821C judgment result. When using the 3GPP measurement procedure, go to section 2.3.7.2 ORFS Switching measurement: When using 3GPP TS 51.010-1.

#### 2.3.7.1 ORFS Switching measurement: When using MT8820C/MT8821C judgment result

- 11. Execute **ORFSSW_JUDGE?** to read the Output RF Spectrum Switching measurement result.
- 12. Confirm the measurement result is PASS.
- 13. Execute MAX_LSWPWR? OF1800 to read the Output RF Spectrum Switching (Frequency Offset –1800 kHz) measurement result.
- 14. Execute MAX_USWPWR? OF1800 to read the Output RF Spectrum Switching (Frequency Offset +1800 kHz) measurement result.

#### 2.3.7.2 ORFS Switching measurement: When using 3GPP TS 51.010-1 measurement procedure

The 3GPP TS51.010-1 measurement procedure is as follows. Evaluate from the measurement result for 400, 600, 1200, and 1800 kHz (Table 2.3.7.2-1).

The reference value differs with Power level. This section describes an example when Power level = 31 dBm. *The reference value is different when the operating band is DCS1800 or PCS1900. Refer to TS51.010-1 13.4 Output RF spectrum.

- 11. Execute MAX_LSWPWR? OF400 to read the Output RF Spectrum Switching (Frequency Offset -400 kHz) measurement result.
- 12. Confirm the measurement result is less than -21 dBm.
- 13. Execute MAX_USWPWR? OF400 to read the Output RF Spectrum Switching (Frequency Offset +400 kHz) measurement result.
- 14. Confirm the measurement result is less than -21 dBm.
- 15. Execute MAX_LSWPWR? OF600 to read the Output RF Spectrum Switching (Frequency Offset –600 kHz) measurement result.
- 16. Confirm the measurement result is less than -23 dBm.
- 17. Execute MAX_USWPWR? OF600 to read the Output RF Spectrum Switching (Frequency Offset +600 kHz) measurement result.
- 18. Confirm the measurement result is less than -23 dBm.
- 19. Execute MAX_LSWPWR? OF1200 to read the Output RF Spectrum Switching (Frequency Offset –1200 kHz) measurement result.
- 20. Confirm the measurement result is less than -23 dBm.
- 21. Execute MAX_USWPWR? OF1200 to read the Output RF Spectrum Switching (Frequency Offset +1200 kHz)

measurement result.

- 22. Confirm the measurement result is less than -23 dBm.
- 23. Execute MAX_LSWPWR? OF1800 to read the Output RF Spectrum Switching (Frequency Offset –1800 kHz) measurement result.
- 24. Confirm the measurement result is less than -26 dBm.
- 25. Execute MAX_USWPWR? OF1800 to read the Output RF Spectrum Switching (Frequency Offset +1800 kHz) measurement result.
- 26. Confirm the measurement result is less than -26 dBm.
- 27. If the procedure 11 to 26 are satisfied, the measurement result can be regarded as PASS.

Outpu	it RF Spec	trum – Moo	dulation	View	(Meas.	Count :	60/	60) 🔳
Judg	ement	Pass						
		Lower			Upper			
kHz	Avg.	Max	Min	Avg.	Max	Min		
0	25.57	27.68	22.68	25.57	27.68	22.68	dBm	
100	-8.89	-5.74	-13.44	-9,80	-4.97	-14.21	dB	
200	-35.95	-33.23	-42.73	-36.12	-33.58	-38.66	dB	
250	-41.54	-39.12	-44.14	-41.24	-38.16	-44.13	dB	
400	-66.20	-61.92	-70.95	-66.85	-62.37	-72.92	dB	
600	-73.84	-69.17	-79.36	-73,97	-68.49	-82.20	dB	
800	-77.44	-72.19	-81.98	-77.19	-72.66	-81.29	dB	
1000	-77.78	-73.56	-82.79	-78.30	-74.88	-83.73	dB	
1200	-78.79	-74.32	-83.26	-79.38	-76.24	-85.10	dB	
1400	-78.81	-72.94	-84.00	-79,56	-75.88	-85.01	dB	
1600	-79.76	-75.89	-84.73	-80.36	-76.31	-85.15	dB	
1800	-72.64	-68.50	-76.08	-73.82	-70.51	-77.10	dB	
2000	-73.16	-69.82	-76.11	-74.05	-70.20	-77.41	dB	

Outpu	t RF Spec	trum – Sw	itching <mark> </mark>	/iew	(Meas.	Count :	60/	60)
Judge	ement	Pass						
		Lower			Upper			
kHz	Avg.	Max	Min	Avg.	Max	Min		
0	31.46	32.51	30.43	31.46	32.51	30.43	dBm	
100	24.63	25.33	23.45	24.47	25.45	22.20	dBm	
200	-2.35	-0.80	-4.47	-1.73	-0.26	-3.23	dBm	
250	-9.97	-8.81	-11.34	-9.73	-8.22	-10,88	dBm	
400	-32.67	-29.25	-36.37	-31.64	-29.24	-33.88	dBm	
600	-38.35	-36.32	-40.75	-36.88	-35.54	-38.58	dBm	
800	-41.42	-38.24	-43.78	-39,90	-37.87	-41.87	dBm	
1000	-42.41	-40.52	-44.78	-41.93	-39.46	-44.99	dBm	
1200	-44.38	-41.97	-46.82	-44.15	-41.79	-47.35	dBm	
1400	-44.84	-41.69	-47.55	-45.04	-43.17	-48.12	dBm	
1600	-45.99	-43.66	-48.39	-45.97	-43.85	-47.96	dBm	
1800	-46.13	-42.75	-49.09	-46.69	-43.54	-50,12	dBm	Ē
2000	-46.44	-43.68	-49.48	-47.16	-44.11	-49.78	dBm	

Power level	Maximum lev	Maximum level for various offsets from carrier frequency							
	400 kHz	600 kHz	1 200 kHz	1 800 kHz					
39 dBm	-13 dBm	-21 dBm	-21 dBm	-24 dBm					
37 dBm	-15 dBm	-21 dBm	-21 dBm	-24 dBm					
35 dBm	-17 dBm	-21 dBm	-21 dBm	-24 dBm					
33 dBm	-19 dBm	-21 dBm	-21 dBm	-24 dBm					
31 dBm	-21 dBm	-23 dBm	-23 dBm	-26 dBm					
29 dBm	-23 dBm	-25 dBm	-25 dBm	-28 dBm					
27 dBm	-23 dBm	-26 dBm	-27 dBm	-30 dBm					
25 dBm	-23 dBm	-26 dBm	-29 dBm	-32 dBm					
23 dBm	-23 dBm	-26 dBm	-31 dBm	-34 dBm					
<= +21 dBm	-23 dBm	-26 dBm	-32 dBm	-36 dBm					

Table 2.3.7.2-1 3GPP TS51.010-1 Table 13-11:GSM Spectrum due to switching transients

#### 2.3.8. 14.2.1 Reference sensitivity - TCH/FS

- 1. Connect using Loopback.
- 2. Execute LBTYPE FASTSPEECH to set [Loop Back Type] to [C(FAST, Speech)].
- 3. Execute **BER_MEAS ON** to set [Bit Error Rate] measurement to [On].
- 4. Execute **BER_SAMPLE FAST,10000** to set Number of Sample [FAST] to [10000].
- 5. Execute **OLVL -104.0** to set [Output Level] to [-104.0] dBm.
- 6. Execute **SWP** to perform BER measurement.
- 7. Execute **BER? FAST** to read the BER measurement result.

Bit Error	Rate	End					
			Ratio	Event	Received	Sample	
FAST			0.21%	21	10000/	10000	
RXLEV	8	RXQUA	_ 1				

This procedure does not follow the 3GPP specified procedure.

#### 2.3.9. Measurement Time Reduction using Batch Process

The above Tx/Rx test items can be measured under the same measurement conditions, so measurement time can be cut by measuring all items simultaneously.

- 1. Connect using Loopback.
- 2. Execute LBTYPE FASTSPEECH to set [Loop Back Type] to [C(FAST, Speech)].
- 3. Execute **PWR_TEMPSTD** to set Template Judgment Lines to the standard matching Channel and MS Power Level.
- 4. Execute **ALLMEASITEMS ON,OFF,60,ON,OFF,ON,OFF,00,ON,OFF,60,ON,OFF,60,ON,OFF** to set all items to [On] and to set [Average Count] to [60] times.
- 5. Execute **BER_SAMPLE FAST,10000** to set Number of Sample [FAST] to [10000].
- 6. Execute **OLVL -104.0** to set [Output Level] to [-104.0] dBm.
- 7. Execute **SWP** to perform measurement.
- 8. Execute **AVG_TXPWR?** to read the measurement results.

## 2.4. Connection with GPRS

Attach (location registration) must be executed with GPRS to test with GPRS. When Attach is completed, the Call Processing state changes to Attached.

#### 2.4.1. Attach procedures

- 1. Execute **PRESET** to preset parameter.
- 2. Execute **OPEMODE GPRS** to set [Operating Mode] to [GPRS].
- 3. Turn on the UE.
- 4. Execute CALLSTAT? and wait until it becomes 13 (= Attached).
  (*) Some UEs do not execute Attach at power-on. In this case, check the UE settings.

#### 2.4.2. Connection Type

Select one of following methods to execute Tx/Rx measurement with GPRS.

TX measurement:Test Mode A or Test Mode B (3GPP recommends TestModeA.)RX measurement:BLER

#### 2.4.3. Multi-slot setting

To use Multi Slot, set the Multi-slot Configuration parameter.

The slot number is limited by each Multi-slot Class. See Table 2.4-1 for the slot number. This instrument supports Class 1 to 12 and 30 to 33.

The Multi-slot Class can be checked at the Report screen after the Attach process (2.4.1).

Multi-slot Class	Maximu	m numbe	Maximum number of slots					
	Rx	Тх	Sum					
1	1	1	2					
2	2	1	3					
3	2	2	3					
4	3	1	4					
5	2	2	4					
6	3	2	4					
7	3	3	4					
8	4	1	5					
9	3	2	5					
10	4	2	5					
11	4	3	5					
12	4	4	5					
30	5	1	6					
31	5	2	6					
32	5	3	6					
33	5	4	6					
34	5	5	6					

#### Table 2.4-1

Rx: Maximum slot number that UE can receive in 1 frame (This instrument uses DL display.) Tx: Maximum slot number that UE can send in 1 frame (This instrument uses UL display.) SUM: Maximum slot number that can be transmitted/received simultaneously by combining Rx and Tx slot number.

2000/00/03 13:02			Phone-2	
<fundamental measurement=""></fundamental>	1DL,	1UL	n GSM	
Parameter Fu	1DL,	2UL	MS Report	
	1DL,	30L 411	MS Power : -44,82 dBm	
External Loss Table (	1DL,	5UL		
Output Level Correction	2DL, 2DL	10L 201		
Variable Slot DL Level <mark>Of</mark>	2DL,	20L 3UL		
Slot0 0.0 dB Slot1	2DL,	4UL	Slot2 0.0 dB Slot3 0.0 dB	
Slot4 0.0 dB Slot5	3DL,	1UL	Slot6 0.0 dB Slot7 0.0 dB	
Signal	3DL,	2UL		
Measuring Object	3DL, 4DL	30L 111	Ю	
Coding Scheme	40L, 4DL,	2UL	1SK)	
Puncturing Scheme	5DL,	1UL	premental Redundancy <mark>Off</mark>	
USF	U	UΣ	F Random Off	
Multi Slot Configuration	1DL,	1UL		
TCH Slot	2			

TX measurement is performed using the maximum slot number setting. RX measurement is performed using the maximum slot number setting.

## 2.4.4. Change of TCH Channel, MS Power Level and CS (Coding Scheme) at Handover

Usually, Tx/Rx measurement is performed at three frequency points (L, M, H). Tx measurement is performed by changing the Slot power level, and Rx measurement is performed by changing the coding scheme (CS). In this case, measurement can be performed quickly without reconnection by switching the TCH Channel, MS Power Level, and CS at handover with a higher output level. When a GPIB command is sent during handover, it waits until handover ends.

#### [TX Measurement]

- 1. Execute CHMSPWR 1,5,5 to change [TCH Channel] to [1] CH, MS Power Level [1st Slot] to [5], MS Power Level [2nd Slot] to [5].
- 2. Perform TX measurement.
- 3. Execute CHMSPWR 1,19,5 to change [TCH Channel] to [1] CH, MS Power Level [1st Slot] to [19], MS Power Level [2nd Slot] to [5].
- 4. Perform TX measurement.
- 5. Execute CHMSPWR 1,5,19 to change [TCH Channel] to [1] CH, MS Power Level [1st Slot] to [5], MS Power Level [2nd Slot] to [19].
- 6. Perform TX measurement.
- 7. Execute CHMSPWR 63,5,5 to change [TCH Channel] to [63] CH, MS Power Level [1st Slot] to [5], MS Power Level [2nd Slot] to [5].
- 8. Perform TX measurement.
- 9. Execute CHMSPWR 63,19,5 to change [TCH Channel] to [63] CH, MS Power Level [1st Slot] to [19], MS Power Level [2nd Slot] o [5].
- 10. Perform TX measurement.
- 11. Execute CHMSPWR 63,5,19 to change [TCH Channel] to [63] CH, MS Power Level [1st Slot ] to [5], MS Power Level [2nd Slot] to [19].
- 12. Perform TX measurement.
- 13. Execute CHMSPWR 127,5,5 to change [TCH Channel] to [127] CH, MS Power Level [1st Slot] to [5], MS Power Level [2nd Slot] to [5].
- 14. Perform TX measurement.
- 15. Execute CHMSPWR 127,19,5 to change [TCH Channel] to [127] CH, MS Power Level [1st Slot] to [19], MS Power Level [2nd Slot] to [5].
- 16. Perform TX measurement.
- 17. Execute CHMSPWR 127,5,19 to change [TCH Channel] to [127] CH, MS Power Level [1st Slot] to [5], MS Power Level [2nd Slot] to [19].
- 18. Perform TX measurement.

#### [RX Measurement]

- 1. Execute CHMSPWR 1,5 to change [TCH Channel] to [1] CH, [MS Power Level] to [5].
- 2. Execute **CS CS3** to change [Coding Scheme] to [CS-3].
- 3. Perform RX measurement.
- 4. Execute **CS CS4** to change [Coding Scheme] to [CS-4].
- 5. Perform RX measurement.
- 6. Execute CHMSPWR 63,5 to change [TCH Channel] to [63] CH, [MS Power Level] to [5].
- 7. Execute **CS CS3** to change [Coding Scheme] to [CS-3].
- 8. Perform RX measurement.
- 9. Execute **CS CS4** to change [Coding Scheme] to [CS-4].
- 10. Perform RX measurement.
- 11. Execute CHMSPWR 127,5 to change [TCH Channel] to [127] CH, [MS Power Level] to [5].
- 12. Execute CS CS3 to change [Coding Scheme] to [CS-3].
- 13. Perform RX measurement.
- 14. Execute **CS CS4** to change [Coding Scheme] to [CS-4].
- 15. Perform RX measurement.

## 2.5. TX Measurement (GPRS)

Measurement of Tx 2 slot is performed by connecting using Test Mode A. The connection procedures are shown below.

#### 2.5.1. Connection with Test Mode A

The following procedures are performed after Attach (section 2.4.1).

- 1. Execute **CONNTYPE MODEA** to set [Connection Type] to [Test Mode A].
- 2. Execute MLTSLTCFG 2DL2UL to set [Multi Slot Configuration] to [2DL, 2UL], meaning 2Slot for Downlink and Uplink.
- 3. Execute **CALLSA** to connect with Test Mode A.
- 4. Execute CALLSTAT? and wait until the response returns 14 (= Transfer).

#### 2.5.2. Disconnection from Test Mode A

At connection of Test Mode A and Test Mode B, communication is disconnected automatically from the UE side when the data transmission set at [Number of PDUs for Test Mode] is completed. Therefore, the connection state must be confirmed before disconnection.

- 1. Execute **CALLSTAT?** and confirm it is 14 (= Transfer). If it is 13 (= Attached), it is already disconnected.
- 2. Execute **CALLSO** to disconnect Test Mode.
- 3. Execute CALLSTAT? and wait until the response returns 13 (= Attached).

### 2.5.3. 13.16.1 Frequency error and phase error in GPRS multi-slot configuration

- 1. Connect with Test Mode A.
- 2. Execute MOD_MEAS ON to set [Modulation Analysis] measurement to [On].
- 3. Execute MOD_COUNT 60 to set [Average Count] of Modulation Analysis measurement to [60] times.

[1st slot measurement]

- 4. Execute ILVLCTRL_REF TCH to set Input Level Control [Reference] to [TCH_1st].
- 5. Execute MEASSLOT 2 to set [Measurement Slot] to [2].
- 6. Execute **SWP** to perform Modulation Analysis measurement.
- 7. Execute MAX_CARRFERR? PPM, MIN_CARRFERR? PPM to read the Frequency Error measurement result.
- 8. Confirm the absolute value of the measurement result is lower than 0.1 ppm.
- 9. Execute MAX_PHASEERR? to read the RMS Phase Error measurement result.
- 10. Confirm the measurement result is lower than 5deg.
- 11. Execute MAX_PPHASEERR?, MIN_PPHASEERR? to read the Peak Phase Error measurement result.
- 12. Confirm the absolute value of measurement result is lower than 20deg.

[2nd slot measurement]

- 13. Execute ILVLCTRL_REF TCH_2ND to set Input Level Control [Reference] to [TCH_2nd].
- 14. Execute **MEASSLOT 3** to set [Measurement Slot] to [3].
- 15. Repeat procedures 6 to 12.

Modulation Analysis View			(Meas, C	ount: 60/	60) 📕
Carrier Frequency	Avg. 890.199	995 MHz			
Carrier Frequency Error	Avg. -0.0046	Max 0.0008	Min -0.0098	kHz	
	-0.01	0.00	-0.01	ppm	
RMS Phase Error	1.34	1.48	1,20	deg.(rms)	
Peak Phase Ennon	0.13	5.22	-5.28	deg.	
Magnitude Error	0.34	0.36	0.33	%(rms)	

## 2.5.4. 13.16.2 Transmitter Output Power in GPRS Multi-slot Configuration

- 1. Connect using Test Mode A.
- 2. Execute PWR_MEAS ON to set [Power Measurement] to [On].
- 3. Execute TEMP_MEAS ON to set [Template] measurement to [On].
- 4. Execute **PWR_COUNT 60** to set [Average Count] of Power Measurement to [60] times.

[1st slot measurement]

- 5. Execute **ILVLCTRL_REF TCH** to set Input Level Control [Reference] to [TCH_1st].
- 6. Execute **MEASSLOT 2** to set [Measurement Slot] to [2].
- 7. Execute **PWR_TEMPSTD** to set Template Judgment Lines to the standard matching Channel and MS Power Level.
- 8. Execute **SWP** to perform Power measurement.
- 9. Execute **AVG_TXPWR?** to read the Power measurement result.
- 10. Execute **AVG_PWRTEMP?** to read the Template measurement result.
- 11. Confirm the measurement result is PASS.

[2nd slot measurement]

- 12. Execute **ILVLCTRL_REF TCH_2ND** to set Input Level Control [Reference] to [TCH_2nd].
- 13. Execute **MEASSLOT 3** to set [Measurement Slot] to [3].
- 14. Repeat procedures 7 to 11.

Power Measurement View			(Meas, Count :	60/	60)	
	Avg.	Max	Min			
TX Power	33.03	33.04	<mark>  33.02</mark> dBm			
Template View			(Meas, Count :	60/	60)	
	Avg.	Max	Min			
Template	Pass	Pass	Pass			

## 2.5.5. 13.16.3 Output RF Spectrum in GPRS Multi-slot Configuration

- 1. Connect using Test Mode A.
- 2. Execute **ORFSMD_MEAS ON** to set [Output RF Spectrum Modulation] measurement to [On].
- 3. Execute **ORFSSW_MEAS ON** to set [Output RF Spectrum Switching] measurement to [On].
- 4. Execute **ORFSMD_COUNT 60** to set [Average Count] of Output RF Spectrum Modulation measurement to [60] times.
- 5. Execute **ORFSSW_COUNT 60** to set [Average Count] of Output RF Spectrum Switching measurement to [60] times.
  - [1st slot measurement]
- 6. Execute **ILVLCTRL_REF TCH** to set Input Level Control [Reference] to [TCH_1st].
- 7. Execute MEASSLOT 2 to set [Measurement Slot] to [2].
- 8. Execute **SWP** to perform ORFS measurements.
- 9. Execute **ORFSMD_JUDGE?** to read the Output RF Spectrum Modulation measurement result.
- 10. Confirm the measurement result is PASS.

*The PASS/FAIL criterion for ORFS Switching measurement is different between the MT8820C/MT8821C and 3GPP TS 51.010-1.

The MT8820C/MT8821C evaluates from all points of 0 to 2000 kHz. The 3GPP TS 51.010-1 evaluates from points 400, 600, 1200, and 1800 kHz.

When using the MT8820C/MT8821C judgment result, go to section 2.5.5.1 ORFS Switching measurement in GPRS multi-slot configuration: When using MT8820C/MT8821C judgment result. When using the 3GPP measurement procedure, go to section 2.5.5.2 ORFS Switching measurement in GPRS multi-slot configuration: When using 3GPP TS 51.010-1.

## 2.5.5.1 ORFS Switching measurement in GPRS multislot configuration: : When using MT8820C/MT8821C judgment result

- 11. Execute **ORFSSW_JUDGE?** to read the Output RF Spectrum Switching measurement result.
- 12. Confirm the measurement result is PASS.

[2nd slot measurement]

- 13. Execute ILVLCTRL_REF TCH_2ND to set Input Level Control [Reference] to [TCH_2nd].
- 14. Execute **MEASSLOT 3** to set [Measurement Slot] to [3].
- 15. Repeat procedures 8 to 12.

## 2.5.5.2 ORFS Switching measurement in GPRS multislot configuration: When using 3GPP TS 51.010-1 measurement procedure

The 3GPP TS51.010-1 measurement procedure is as follows. Evaluate from the measurement result for 400, 600, 1200, and 1800 kHz (Table 2.5.5.2-1).

The reference value differs with the Power level. This section describes an example when Power level = 31 dBm. *The reference value is different when the operating band is DCS1800 or PCS1900. Refer to TS51.010-1 13.16.3 Output RF spectrum in GPRS multi-slot configuration.

- 11. Execute MAX_LSWPWR? OF400 to read the Output RF Spectrum Switching (Frequency Offset -400 kHz) measurement result.
- 12. Confirm the measurement result is less than -21dBm.
- 13. Execute MAX_USWPWR? OF400 to read the Output RF Spectrum Switching (Frequency Offset +400 kHz) measurement result.
- 14. Confirm the measurement result is less than -21dBm.
- 15. Execute MAX_LSWPWR? OF600 to read the Output RF Spectrum Switching (Frequency Offset –600 kHz) measurement result.
- 16. Confirm the measurement result is less than -23 dBm.
- 17. Execute MAX_USWPWR? OF600 to read the Output RF Spectrum Switching (Frequency Offset +600 kHz) measurement result.

- 18. Confirm the measurement result is less than -23 dBm.
- 19. Execute MAX_LSWPWR? OF1200 to read the Output RF Spectrum Switching (Frequency Offset –1200 kHz) measurement result.
- 20. Confirm the measurement result is less than -23 dBm.
- 21. Execute MAX_USWPWR? OF1200 to read the Output RF Spectrum Switching (Frequency Offset +1200 kHz) measurement result.
- 22. Confirm the measurement result is less than -23 dBm.
- 23. Execute MAX_LSWPWR? OF1800 to read the Output RF Spectrum Switching (Frequency Offset –1800 kHz) measurement result.
- 24. Confirm the measurement result is less than -26 dBm.
- 25. Execute MAX_USWPWR? OF1800 to read the Output RF Spectrum Switching (Frequency Offset +1800 kHz) measurement result.
- 26. Confirm the measurement result is less than -26 dBm.
- 27. If the procedure 11 to 26 are satisfied, the measurement result can be regarded as PASS. [2nd slot measurement]
- 28. Execute **ILVLCTRL_REF TCH_2ND** to set Input Level Control [Reference] to [TCH_2nd].
- 29. Execute MEASSLOT 3 to set [Measurement Slot] to [3].
- 30. Repeat procedures 8 to 27.

Output RF Spectrum - Modulation Judgement Pass	View	(Meas, Count ;	60/	60) 🗖
Output RF Spectrum - Switching Judgement Pass	View	(Meas, Count :	60/	60)

Table 2.5.5.2-1 3GPP TS51.010-1 Table 13.16.3-6:GSM Spectrum due to switching transients

Power level	Maximum level for various offsets from carrier frequency					
	400 kHz	600 kHz	1200 kHz	1 800 kHz		
39 dBm	-13 dBm	-21 dBm	-21 dBm	-24 dBm		
37 dBm	-15 dBm	-21 dBm	-21 dBm	-24 dBm		
35 dBm	-17 dBm	-21 dBm	-21 dBm	-24 dBm		
33 dBm	-19 dBm	-21 dBm	-21 dBm	-24 dBm		
31 dBm	-21 dBm	-23 dBm	-23 dBm	-26 dBm		
29 dBm	-23 dBm	-25 dBm	-25 dBm	-28 dBm		
27 dBm	-23 dBm	-26 dBm	-27 dBm	-30 dBm		
25 dBm	-23 dBm	-26 dBm	-29 dBm	-32 dBm		
23 dBm	-23 dBm	-26 dBm	-31 dBm	-34 dBm		
<= +21 dBm	-23 dBm	-26 dBm	-32 dBm	-36 dBm		

## 2.6. RX Measurement (GPRS)

The procedures explaining how to measure RX 4 slot with BLER connection are shown below.

#### 2.6.1. Connection with BLER

The following procedures are performed after Attach (section 2.4.1).

- 1. Execute **CONNTYPE BLER** to set [Connection Type] to [BLER].
- 2. Execute **MLTSLTCFG 4DL1UL** to set [Multi Slot Configuration] to [4DL, 1UL] that means 4Slots for Downlink and 1 Slot for Uplink.
- 3. Execute **CALLSA** to connect with BLER.
- 4. Execute **CALLSTAT?** and wait until it becomes 14 (= Transfer).

#### 2.6.2. Disconnection from BLER

- 1. Execute **CALLSO** to disconnect from Test Mode.
- 2. Execute **CALLSTAT?** and wait until it becomes 13 (= Attached).

#### 2.6.3. 14.16.1 Minimum Input level for Reference Performance

- 1. Connect with BLER.
- 2. Execute **BLER_MEAS ON** to set [Block Error Rate](BLER) measurement to [On].
- 3. Execute **BLER_SAMPLE 2000** to set Number of Sample [BLER] to [2000] blocks.
- 4. Execute **OLVL -104.0** to set [Output Level] to [-104.0] dBm.
- 5. Execute SWP to perform BLER measurement.
- 6. Execute **BLER?** to read the BLER measurement results.

Block Error Rate <mark>End</mark>					
	Ratio	Event	Received	Sample	
Block Error Rate	1.25 <mark>%</mark>	25	2000	/ 2000	
– 1st Slot	2.20 发	11	500		
- 2nd Slot	1.20 发	6	500		
– 3nd Slot	0.40 %	2	500		
– 4th Slot	1.20 %	6	500		
– 5th Slot	%				

## 2.7. Connection with EGPRS

Measurement with EGPRS is executed after Attach (location registration).

#### 2.7.1. Attach Procedure

- 1. Execute **PRESET** to preset the parameters.
- 2. Execute **OPEMODE EGPRS** to set [Operating Mode] to [EGPRS].
- 3. Turn on the UE power.
- 4. Execute CALLSTAT? and wait until it becomes 13 (= Attached).
  (*) Some UE do not execute Attach at power-on. In this case, check the UE setting.

## 2.7.2. Connection Type

Select one of following methods to execute TX/RX measurement with EGPRS. TX measurement: Test Mode A RX measurement: BLER, SRB Loopback

## 2.7.3. Multi-slot Setting

See item 2.4.3.

#### 2.7.4. Change of TCH Channel, MS Power Level, CS (Coding Scheme) by Handover

See item 2.4.4.

## 2.7.5. GMSK and 8PSK Modulations

At EGPRS, the modulation system is changed using the Coding Scheme method.

Coding Scheme	Modulation
MCS-9	
MCS-8	8PSK
MCS-7	01 SIX
MCS-6	
MCS-5	
MCS-4	
MCS-3	GMSK
MCS-2	
MCS-1	

#### Table 2.7-1: Modulation method for Coding Scheme

Coding Scheme	MCS-5	(8PSK)
Puncturing Scheme	MCS-1	
USF	MCS-2	USF Random Off
Multi Slot Configuration	MCS-3	
TCH Slot	MCS-4	
TS	MCS-0	=0970897)
TCH Test Pattern	MCS-7	
Timing Advance	MCS-8	t
	MCS-9	

When performing Tx measurement, the measured target must be either 8PSK or GMSK, matching the modulation system.

Signal	
Measuring Object	MS-NB (GMSK)
Coding Scheme	MS-NB (GMSK)
Puncturing Scheme	8PSK
USF	RACH andom Off

## 2.8. TX Measurement (EGPRS)

The procedures below explain how to measure MCS-5 and TX 2 slot by connecting using Test Mode A and using Coding Scheme (CS).

#### 2.8.1. Connection with Test Mode A

Perform the following procedures after Attach (section 2.7.1).

- 1. Execute **CONNTYPE MODEA** to set [Connection Type] to [Test Mode A].
- 2. Execute MLTSLTCFG 2DL2UL to set [Multi-slot Configuration] to [2DL, 2UL] that means 2Slots for Downlink and 2 Slot for Uplink.
- 3. Execute CS MCS5 to set [Coding Scheme] to [MCS-5].
- 4. Execute **CALLSA** to connect using Test Mode A.
- 5. Execute **CALLSTAT?** and wait until it becomes 14 (= Transfer).

#### 2.8.2. Disconnection from Test Mode A

When connecting using Test Mode A, disconnection is performed automatically from the UE side when sending of (Number of PDUs for Test Mode) is completed. Therefore, check the connection state before disconnecting.

- 1. Execute **CALLSTAT?** and confirm it is 14 (= Transfer). If it is 13 (= Attached), it is already disconnected.
- 2. Execute **CALLSO** to disconnect Test Mode A.
- 3. Execute **CALLSTAT?** and wait until it becomes 13 (= Attached).

### 2.8.3. 13.17.1 Frequency Error and Modulation Accuracy in EGPRS Configuration

- 1. Connect using Test Mode A.
- 2. Execute MEASOBJ 8PSK to set [Measuring Object] to [8PSK].
- 3. Execute **MOD_MEAS ON** to set [Modulation Analysis] measurement to [On].
- 4. Execute MOD_COUNT 60 to set [Average Count] of Modulation Analysis measurement to [60] times.

#### [1st slot measurement]

- 5. Execute **ILVLCTRL_REF TCH** to set Input Level Control [Reference] to [TCH_1st].
- 6. Execute **MEASSLOT 2** to set [Measurement Slot] to [2].
- 7. Execute **SWP** to perform Modulation Analysis measurement.
- 8. Execute MAX_CARRFERR? PPM, MIN_CARRFERR? PPM to read the Frequency Error measurement result.
- 9. Confirm the absolute value of the measurement result is lower than 0.1ppm.
- 10. Execute MAX_EVM? to read the RMS EVM measurement result.
- 11. Confirm the measurement result is lower than 9%.
- 12. Execute **MAX_PEVM?** to read the Peak EVM measurement result.
- 13. Confirm the measurement result is lower than 30%.
- 14. Execute **EVM95PCT?** to read the 95:th-percentile measurement result.
- 15. Confirm the measurement result is lower than 15%.
- 16. Execute MAX_ORGNOFS? to read the Origin Offset measurement result.
- 17. Confirm the measurement result is higher than 30 dB.

#### [2nd slot measurement]

- 18. Execute **ILVLCTRL_REF TCH_2ND** to set Input Level Control [Reference] to [TCH_2nd].
- 19. Execute **MEASSLOT 3** to set [Measurement Slot] to [3].
- 20. Repeat procedures 7 to 16.

Modulation Analysis View			(Meas, C	Count : 60/	60) 🚺
	Avg.	222			
Cannier Frequency	890.199	996 MHZ			
	Avg.	Max	Min		
Carrier Frequency Error	-0.0038	0.0086	-0.0219	kHz	
	0.00	0.01	-0.02	ppm	
RMS Phase Error	2.10	2.59	1.84	deg.(rms)	
Peak Phase Error	5.81	8.96	4.34	deg.	
Magnitude Error	2.66	3.31	1.93	%(rms)	
RMS EVM	4.53	5.45	3.81	%(rms)	
Peak EVM	10.25	15.62	7.67	8	
Origin Offset	39.81	54.22	35.46	dB	
95:th Percentile	7.67			8	

## 2.8.4. 13.17.3 EGPRS Transmitter Output Power

- 1. Connect using Test Mode A.
- 2. Execute MEASOBJ 8PSK to set [Measuring Object] to [8PSK].
- 3. Execute PWR_MEAS ON to set [Power Measurement] to [On].
- 4. Execute TEMP_MEAS ON to set [Template] measurement to [On].
- 5. Execute **PWR_COUNT 60** to set [Average Count] of Power measurement to [60] times.

[1st slot measurement]

- 6. Execute ILVLCTRL_REF TCH to set Input Level Control [Reference] to [TCH_1st].
- 7. Execute MEASSLOT 2 to set [Measurement Slot] to [2].
- 8. Execute **PWR_TEMPSTD** to set Template Judgment Lines to the standard matching the Channel and MS Power Level.
- 9. Execute **SWP** to perform Power measurement.
- 10. Execute **AVG_TXPWR?** to read the Power measurement result.
- 11. Execute EST8PSKPWR? to read the Estimated 8PSK Power measurement result.
- 12. Execute **AVG_PWRTEMP?** to read the Template measurement result.
- 13. Confirm the measurement result is PASS.

#### Estimated 8PSK Power measurement calculates the long-term average Power.

[2nd slot measurement]

- 14. Execute ILVLCTRL_REF TCH_2ND to set Input Level Control [Reference] to [TCH_2nd].
- 15. Execute **MEASSLOT 3** to set [Measurement Slot] to [3].
- 16. Repeat procedures 8 to 13.

#### 2.8.5. 13.17.3 Output RF Spectrum in EGPRS Configuration

- 1. Connect using Test Mode A.
- 2. Execute MEASOBJ 8PSK to set [Measuring Object] to [8PSK].
- 3. Execute ORFSMD_MEAS ON to set [Output RF Spectrum Modulation] measurement to [On].
- 4. Execute **ORFSSW_MEAS ON** to set [Output RF Spectrum Switching] measurement to [On].
- 5. Execute **ORFSMD_COUNT 60** to set [Average Count] of Output RF Spectrum Modulation measurement to [60] times.
- 6. Execute **ORFSSW_COUNT 60** to set [Average Count] of Output RF Spectrum Switching measurement to [60] times.

[1st slot measurement]

- 7. Execute ILVLCTRL_REF TCH to set Input Level Control [Reference] to [TCH_1st].
- 8. Execute MEASSLOT 2 to set [Measurement Slot] to [2].
- 9. Execute **SWP** to perform ORFS measurements.
- 10. Execute **ORFSMD_JUDGE?** to read the Output RF Spectrum Modulation measurement result.
- 11. Confirm the measurement result is PASS.

*The PASS/FAIL criterion for ORFS Switching measurement is different between the MT8820C/MT8821C and 3GPP TS 51.010-1.

The MT8820C/MT8821C evaluates from all points of 0 to 2000 kHz. The 3GPP TS 51.010-1 evaluates from points 400, 600, 1200, and 1800 kHz.

When using the MT8820C/MT8821C judgment result, go to section 2.8.5.1 ORFS Switching measurement in EGPRS configuration: When using MT8820C/MT8821C judgment result. When using the 3GPP measurement procedure, go to section 2.8.5.2 ORFS Switching measurement in EGPRS configuration: When using 3GPP TS 51.010-1 measurement procedure.

## 2.8.5.1 ORFS Switching measurement in EGPRS configuration: When using a judgment result of MT8820C/MT8821C

- 12. Execute **ORFSSW_JUDGE?** to read the Output RF Spectrum Switching measurement result.
- 13. Confirm the measurement result is PASS.

[2nd slot measurement]

- 14. Execute ILVLCTRL_REF TCH_2ND to set Input Level Control [Reference] to TCH_2nd].
- 15. Execute **MEASSLOT 3** to set [Measurement Slot] to [3].
- 16. Repeat procedures 9 to 13.

# 2.8.5.2 ORFS Switching measurement in EGPRS configuration: When using 3GPP TS 51.010-1 measurement procedure

The 3GPP TS51.010-1 measurement procedure is as follows. Evaluate from the measurement results for 400, 600, 1200, and 1800 kHz (Table 2.8.5.2-1).

The reference value differs with Power level. This section describes an example when Power level = 31 dBm. *The reference value is different when the operating band is DCS1800 or PCS1900. Refer to TS51.010-1 13.17.4 Output RF spectrum in EGPRS configuration.

- 12. Execute MAX_LSWPWR? OF400 to read the Output RF Spectrum Switching (Frequency Offset –400 kHz) measurement result.
- 13. Confirm the measurement result is less than -21dBm.
- 14. Execute MAX_USWPWR? OF400 to read the Output RF Spectrum Switching (Frequency Offset +400 kHz) measurement result.
- 15. Confirm the measurement result is less than -21dBm.
- 16. Execute MAX_LSWPWR? OF600 to read the Output RF Spectrum Switching (Frequency Offset –600 kHz) measurement result.
- 17. Confirm the measurement result is less than -23 dBm.
- Execute MAX_USWPWR? OF600 to read the Output RF Spectrum Switching (Frequency Offset +600 kHz) measurement result.
- 19. Confirm the measurement result is less than -23 dBm.
- 20. Execute MAX_LSWPWR? OF1200 to read the Output RF Spectrum Switching (Frequency Offset –1200 kHz) measurement result.
- 21. Confirm the measurement result is less than -23 dBm.
- 22. Execute MAX_USWPWR? OF1200 to read the Output RF Spectrum Switching (Frequency Offset +1200 kHz) measurement result.
- 23. Confirm the measurement result is less than -23 dBm.
- 24. Execute MAX_LSWPWR? OF1800 to read the Output RF Spectrum Switching (Frequency Offset –1800 kHz) measurement result.
- 25. Confirm the measurement result is less than -26 dBm.
- Execute MAX_USWPWR? OF1800 to read the Output RF Spectrum Switching (Frequency Offset +1800 kHz) measurement result.
- 27. Confirm the measurement result is less than -26 dBm.
- 28. If the procedure 12 to 27 are satisfied, the measurement result can be regarded as PASS.
- [2nd slot measurement]
- 29. Execute ILVLCTRL_REF TCH_2ND to set Input Level Control [Reference] to [TCH_2nd].
- 30. Execute **MEASSLOT 3** to set [Measurement Slot] to [3].
- 31. Repeat procedures 9 to 28.

Table 2.8.5.2-1 3GPP TS51.010-1 Table 13.17.4-5:GSM700, GSM850 and GSM900 Spectrum due to switching transients

Power level	Maximum level for various offsets from carrier frequency				
	400 kHz	600 kHz	1 200 kHz	1 800 kHz	
39 dBm	-13 dBm	-21 dBm	-21 dBm	-24 dBm	
37 dBm	-15 dBm	-21 dBm	-21 dBm	-24 dBm	
35 dBm	-17 dBm	-21 dBm	-21 dBm	-24 dBm	
33 dBm	-19 dBm	-21 dBm	-21 dBm	-24 dBm	
31 dBm	-21 dBm	-23 dBm	-23 dBm	-26 dBm	
29 dBm	-23 dBm	-25 dBm	-25 dBm	-28 dBm	
27 dBm	-23 dBm	-26 dBm	-27 dBm	-30 dBm	
25 dBm	-23 dBm	-26 dBm	-29 dBm	-32 dBm	
23 dBm	-23 dBm	-26 dBm	-31 dBm	-34 dBm	
<= +21 dBm	-23 dBm	-26 dBm	-32 dBm	-36 dBm	

## 2.9. RX Measurement (EGPRS)

The procedures explaining how to measure RX 4 slot with BLER connection are shown below.

#### 2.9.1. Connection with BLER

The following procedures are performed after Attach (section 2.7.1).

- 1. Execute CONNTYPE BLER to set [Connection Type] to [BLER].
- 2. Execute **MLTSLTCFG 4DL1UL** to set [Multi Slot Configuration] to [4DL, 1UL] that means 4Slots for Downlink and 1 Slot for Uplink.
- 3. Execute **CALLSA** to connect with BLER.
- 4. Execute CALLSTAT? and wait until the status becomes 14 (= Transfer).

#### 2.9.2. Disconnection from BLER

- 1. Execute **CALLSO** to disconnect from Test Mode.
- 2. Execute **CALLSTAT?** and wait until the status becomes 13 (= Attached).

#### 2.9.3. 14.18.1 Minimum Input level for Reference Performance

- 1. Connect using **BLER.**
- 2. Execute **BLER_MEAS ON** to set [Block Error Rate] (BLER) measurement to [On].
- 3. Execute **BLER_SAMPLE 2000** to set Number of Sample [BLER] to [2000] blocks.
- 4. Execute **OLVL -104.0** to set [Output Level] to [-104.0] dBm.
- 5. Execute **SWP** to perform BLER measurement.
- 6. Execute **BLER?** to read the BLER measurement results.

Block Error Rate <mark>End</mark>					
	Ratio	Event	Received	Sample	
Block Error Rate	1.15 <mark>%</mark>	23	2000	2000	
- 1st Slot	1.00 🕺	5	500		
- 2nd Slot	1.20 🕺	6	500		
- 3rd Slot	0.80 %	4	500		
- 4th Slot	1.60 %	8	500		

## 2.10. MS Report

This function reads the Measurement Report provided regularly (every 480 ms) from the UE. Note: After changing the Downlink Level, two reports are measured using the level before the change.



- 2. Execute OLVL -104.0 to set [Output Level] to [-104.0] dBm.
- 3. Execute **CALLRFR** to preset Flag.
- 4. Execute CALLREP? and wait until Flag becomes 1 (first).
- 5. Execute **CALLRFR** to preset Flag.
- 6. Execute CALLREP? and wait until Flag becomes 1 (second).
- 7. Execute **CALLRFR** to preset Flag.
- 8. Execute CALLREP? and wait until Flag becomes 1 (third), and read RX Level and RX Quality.

## 2.11. Functional Test

#### 2.11.1. Voice Call

For GSM, the Call Processing function supports Voice Call tests with each speech channel. This measuring instrument supports the speech channels shown below.

FS	13.0 kbps
EFS	12.2 kbps
HS	11.4 kbps
AFS	12.2 kbps
	10.2 kbps
	7.95 kbps
	7.40 kbps
	6.70 kbps
	5.90 kbps
	5.15 kbps
	4.75 kbps
AHS	7.95 kbps
	7.40 kbps
	6.70 kbps
	5.90 kbps
	5.15 kbps
	4.75 kbps

#### 2.11-1: Speech Channel Support Chart

An example of how to perform the origination test using the AFS 7.95 kbps voice Codec is shown below.

- 1. Execute **CALLPROC ON** to set [Call Processing] to [On].
- 2. Execute CODEC AFS to set [Codec] to [AFS].
- 3. Execute NBRATE 7.95 to set [Net Bit Rate] to [7.95 kbps].
- 4. Call from a UE with any telephone number.Call Process turns on Origination. The telephone number can be checked on the MS Report screen.
- 5. Execute **CALLSTAT?** and wait until it becomes 7 (= Communication).
- Call Processing turns on Communication and the instrument and UE can now communicate.
- 6. Execute **TESTPAT ECHO** to set [TCH Test Pattern] to [Echo] to perform the voice communication test using echo-back.
- 7. Execute **CALLSO** to disconnect from the equipment, or from the UE after on-hooking. Call Processing turns on MS Release or NW Release.



Fig. 2.11-1: Connection Sequence

Check each state using the CALLRSLT? command.

An example of how to check completion of Registration and Origination is shown below.

- 1. Execute CALLRSLT? 4 and confirm Registration is 1,0 (= executed, no errors).
- 2. Execute CALLRSLT? 5 and confirm the Origination status is 1,0 (= executed, no errors).

Each connection sequence can be preset using CALLRFR command

## 2.11.2. External Packet Data (Option MX882001C-002)

For GSM, GPRS packet connection can be tested using the MX882001C-002GSM External Packet Data option and Call Processing function. The connection system supports IP connections.

The equipment supports communications between the Server PC and Client PC by supporting the IP protocol over wireless interface and UE.



Items to prepare> GSM UE with GPRS function Server PC (Application Server) Client PC (Client) Crossover cable for connection between the equipment and Server PC

- 1. Set 10Base-T [IP Address] to the same segment on the System Config screen.
- 2. Set 10 Base-T[Subnet Mask] on System Config screen (Example: 255.255.255.0).

3. Set 10Base-T [Default Gateway] to the same IP address as the Application Server PC at the System Config screen.

(If the IP packet has no address, the measuring instrument will search the address, taking more time. The equipment sends all IP packets of the Client PC to the Server PC to avoid delay. The setting is unnecessary if the Client PC only sends the Application Server IP Address).

- 4. Reload the GSM application at the Standard Load screen.
- 5. Set [Call Processing] of Common Parameter to [On].
- 6. Set [Operating Mode] of Common Parameter to [GPRS].
- 7. Set [Connection Type] of Common Parameter to [Ext. Packet Data].
- 8. Confirm that the DHCP setting of the Client PC is on.
- 9. Set [MS IP Address] of Call Processing Parameter. This IP address will be allocated to the Client PC.
- Turn-on the UE to perform Attach.
   (Check the UE setting if the UE doesn't perform Attach at power-on.)
- Execute dial-up connection after setting a password and user name for the Client PC.
   (Setting of the user name and password is not required for the measuring instrument.)
- 12. Call Processing turns on Activate and the equipment and UE can perform GPRS communications. (IP packet communications between the Server and Client is possible.)
- 13. The connection can be checked by executing the ping command from the Server PC or Client PC.
- 14. Data throughput can be measured by setting up an FTP server in the Server PC.
- 15. Dial-up connection is terminated by the Client PC.
- 16. Call Processing changes from Activated to Attached.

#### 🖾 אלכם ליא אידב

C:¥>ping 192.168.20.10

Pinging 192.168.20.10 with 32 bytes of data:

```
Reply from 192.168.20.10: bytes=32 time<10ms TTL=128
Reply from 192.168.20.10: bytes=32 time<10ms TTL=128
Reply from 192.168.20.10: bytes=32 time<10ms TTL=128
Ping statistics for 192.168.20.10:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:¥>______
```

- 0 ×

#### 2. **Connection with Gateway**

Packet communications between different segments can be verified by connecting a gateway between the equipment and Server PC.



<Items to prepare>

GSM UE with GPRS function

Server PC (Application Server)

#### Client PC (Client)

Gateway

Straight-through cable for connection between equipment and Gateway and between Server PC and Gateway.

- Set 10Base-T [IP Address] (main frame IP address) to the same segment as Gateway at the System Config 1. screen.
- 2. Set 10Base-T [Default Gateway] and [Subnet Mask] at the System Config screen. At this time, the Default Gateway IP address is set to the same IP address on the LAN side of Router. (For example, if the Default Gateway address is 192.168.20.1, set the LAN IP address to 192.168.20.1).
- 3. Reload the GSM application at the Standard Load screen.
- 4. Set [Call Processing] of Common Parameter to [On]
- 5. Set [Operating Mode] of Common Parameter to [GPRS].
- 6. Set [Connection Type] of Common Parameter to [Ext. Packet Data].
- 7. Confirm that the Client PC DHCP setting is on.
- Set [MS IP Address] of Call Processing. This address is allocated to the Client PC at connection. 8.
- Turn-on the UE to perform Attach. 9. (Check the UE setting if the UE does not perform Attach at power-on.).
- 10. Execute dial-up connection after setting a password and user name for the Client PC . (Setting of the user name and password is not required for the measuring instrument.)
- 11. Call Processing turns on Activate and the equipment and UE can perform GPRS communications. (IP packet communications between Server and Client is possible.)
- 12. The connection can be checked by executing the ping command from the Server or Client PC.
- 13. Data throughput can be measured by setting up an FTP server in the Server PC.
- 14. The dial-up connection is terminated at the Client PC.
- 15. Call Processing changes from Activated to Attached.

## 2.12. Calibration Measurement Function

Refer to the Application Note for UE Calibration about the Calibration Measurement Function.

#### 2.12.1. Adjustment of Orthogonal Modulator by TXIQ Measurement

When adjusting the orthogonal modulator of a GSM UE, the carrier frequency and  $\pm 67.708$  kHz (symbol rate/4) offset power are measured by outputting a rotating pattern from the UE. The TXIQ function measures the power of frequency points to adjust the orthogonal modulator. Measurement is performed with RBW = 30 kHz.

Although TXIQ measurement is performed as a part of modulation analysis by the equipment, the measurement results are not displayed on-screen and can only be acquired by remote command.

#### [Measurement parameter]

TXIQ measurement is executed after setting the parameters shown in Table 2.8.2-1. TXIQ measurement is performed as part of modulation analysis. Therefore, ON/OFF setting and average number of measurements follow the modulation analysis parameters.

No	Parameter	Setting
1	Call Processing	OFF
2	Measuring Object	Continuous
3	Modulation Analysis	ON
4	Average Count of Modulation	Also Average Count of TXIQ measurement
	Analysis	

#### Table 2.8.2-1: TXIQ Measurement Parameter Setting

#### [Remote command]

TXIQ measurement is executed simultaneously by setting the parameters shown in Table 2.8.2-1 and performing Fundamental measurement. However, the measurement result is not displayed on-screen and must be acquired by remote command. Commands for reading the TXIQ measurement result are shown in Table 2.8.2-2.

No	Command	Function
1	AVG_TXIQ?	Queries average value of TXIQ measurement result
2	MAX_TXIQ?	Queries maximum value of TXIQ measurement result
3	MIN_TXIQ?	Queries minimum value of TXIQ measurement result

The responses to read commands are shown below.

p1, p2, p3, p4, p5, p6, p7, p8, p9

frequency offset

Each frequency offset power is mentioned from p1 to p9 in dBm units.

Offset frequencies are –270.833 kHz, –203.125 kHz, –135.417 kHz, –67.708 kHz, 0 kHz (carrier frequency), +67.708 kHz, +135.417 kHz, +203.125 kHz, and +270.833 kHz.

#### [Example of remote control]

Performing TXIQ measurement with Average Count 10 and read maximum value.

send( "CALLPROC OFF" );	/* Call Processing OFF */
send( "MEASOBJ CONT" );	/* Set Measuring Object to Continuous */
send( "MOD_MEAS ON" );	/* Turn on modulation analysis */
send( "MOD_COUNT 10" );	/* Set Average Count of modulation analysis to 10 */
Start UE Signal Output	
send( "SWP" );	/* Start Measurement */
send( "MSTAT?" );	/* Measurement Status Reading Command */
read( status );	/* Measurement Status Reading Command */
send( "MAX_TXIQ?" );	/* TXIQ Measurement Result Reading Command */
read( result );	/* TXIQ Measurement Result Reading Command */

## 2.13. Others

#### 2.13.1. External Loss

The equipment supports setting of external loss, such as cable loss, as offset values.

There are two methods for setting external loss:

- Setting external loss for GSM only
- •Setting common external loss for other standards (See 1.13.3 External Loss for details.)

An example of how to set external loss for GSM is shown below.

External loss values can be set for Main DL, Main UL, and Aux of each three Bands.

External Loss	On		
	Band 1	Band 2	Band 3
Main DL	0.00 dB	0.12 dB	0.98 dB
Main UL	0.00 dB	0.34 dB	0.76 dB
AUX	0.00 dB	0.00 dB	0.00 dB
External Loss Table	(0)		

The relationship between band and frequency is shown in Table 2.13-1.

Table 2.13-1: External Loss Band and Freq. Relationship

	Band 1	Band 2	Band 3
Frequency range	30.000000 MHz to	800.000000 MHz to	1600.000000 MHz to
	799.999999 MHz	1599.999999 MHz	2700.000000 MHz
GSM Band	GSM450	P-GSM900	DCS1800
	GSM480	E-GSM900	PCS1900
	GSM710	R-GSM900	
	GSM750	GSM850	
		T-GSM810	

Examples of how to set the Band 2 Main DL loss to 0.12, the Band 2 Main UL loss to 0.34, the Band 3 Main DL loss to 0.98, and the Band 3 Main UL loss to 0.76 are shown below.

- 1. Execute **DLEXTLOSS BAND2,0.12** to set [Main DL Band 2] to [0.12] dB.
- 2. Execute **ULEXTLOSS BAND2,0.34** to set [Main UL Band 2] to [0.34] dB.
- 3. Execute DLEXTLOSS BAND3,0.98 to set [Main DL Band 3] to [0.98] dB.
- 4. Execute ULEXTLOSS BAND3,0.76 to set [Main UL Band 3] to [0.76] dB.
- 5. Execute **EXTLOSSW ON** to set [External Loss] to [On].

*The operation when setting External Loss differs according to the version.

Sometimes, the I/O level may be changed unexpectedly when setting parameters at tracking operation. After setting the measurement conditions (external loss, frequency, etc.), always set the I/O level before starting

measurement (W/G, TDS only)

The specifications have been changed for version V20.00 and later so the I/O level does not change when changing the external loss and frequency settings.

#### 2.13.2. Power Control (SACCH Channel)

When using SACCH Channels to change PCL (Power Control Level), the signal level from the UE changes 2 dB every 60 ms (13TDMA Frame).



Fig. 2.13-1: Power Control using SACCH Channel (changing from PCL 5 to 8)

The procedures explaining how to measure each PCL signal level using this operation are shown below.

- 1. Connect using UE. (Refer to 2.3.1 to see the connection with GSM.)
- 2. Execute **ALLMEASITEMS ON,OFF,1,OFF,OFF,OFF,OFF,OFF,0FF,1,OFF,OFF,1,OFF,OFF,1,OFF,OFF**, to set only [Power Measurement ] to [On] and to set [Average Count] to [1] time.
- 3. Execute MEASMODE FAST to set [Measurement Mode] to [FAST] (no graphical display, numeric data only).
- 4. Execute MSPWR 5 to set [MS Power Level](PCL) to [5].
- 5. Execute **ILVLCTRL MANUAL** to set [Input Level Control] to [Manual] in order to fix INPUT LEVEL to the setting at PCL 5.
- 6. Execute **MSPWRCTRL SACCH** to set the channel to notify change of Power Control Level to SACCH. (This can be changed only by GPIB command. It cannot be changed on-screen.)
- 7. Execute **MSPWR 15** to change [MS Power Level](PCL) to [15].
- Execute SWP;TXPWR? and repeat the measurement until PCL changes.
   (If PCL is changed from 5 to 15, at least 1.6 s should be allowed, because the time to change power will be 600 ms and there is also delay between the UE and PC (960 ms max.). Therefore, repeat measurement.)
- 9. Execute **MSPWRCTRL FACCH to set** the channel to notify the change of Power Control Level to FACCH.

Detect each PCL Power Level from the result of procedure 8.

#### [Example]

SWP;TXPWR?33.12Repeat measurement execution (SWP) and remeasurement result.SWP;TXPWR?33.12PCL=5SWP;TXPWR?33.12PCL=5SWP;TXPWR?33.12PCL=5SWP;TXPWR?33.13PCL=5	].
SWP;TXPWR?       33.12       PCL=5         SWP;TXPWR?       33.12       PCL=5         SWP;TXPWR?       33.12       PCL=5         SWP;TXPWR?       33.12       PCL=5         SWP;TXPWR?       33.13       PCL=5	ad
SWP;TXPWR?     33.12     PCL=5       SWP;TXPWR?     33.12     PCL=5       SWP;TXPWR?     33.12     PCL=5       SWP;TXPWR?     33.13     PCL=5	
SWP;TXPWR?         33.12         PCL=5           SWP;TXPWR?         33.12         PCL=5           SWP;TXPWR?         33.13         PCL=5	
SWP;TXPWR?         33.12         PCL=5           SWP;TXPWR?         33.13         PCL=5	
SWP;TXPWR? 33.13 PCL=5	
SWP;TXPWR? 33.13 PCL=5	
SWP;TXPWR? 33.12 PCL=5	
SWP;TXPWR? 30.73 PCL=6	
SWP;TXPWR? 29.20 PCL=7	

SWP;TXPWR?	27.05	PCL=8
SWP;TXPWR?	24.90	PCL=9
SWP;TXPWR?	22.90	PCL=10
SWP;TXPWR?	20.81	PCL=11
SWP;TXPWR?	18.68	PCL=12
SWP;TXPWR?	16.75	PCL=13
SWP;TXPWR?	14.71	PCL=14
SWP;TXPWR?	12.81	PCL=15
SWP;TXPWR?	12.80	PCL=15
SWP;TXPWR?	12.80	PCL=15
SWP;TXPWR?	12.80	PCL=15
SWP;TXPWR?	12.79	PCL=15
SWP;TXPWR?	12.80	PCL=15

Because the SWP; TXPWR? speed depends on the performance of the PC controller, sometimes the PCL timing changes and the measurement result is captured more than twice. In this case, either adjust the actual speed or estimate from the measurement result.

## 2.13.3. MS-TXPWR-MAX-CCH

At measurement of 3GPP TS51.010, when MS-TXPWR-MAX-CCH is not specified, the setting of MS-TXPWR-MAX-CCH is set to the maximum Tx power.

MS-TXPWR-MAX-CCH is used as Cell Selection Parameter to evaluate whether the UE holds the connection when the BS power is low.

Therefore when the setting is high, the connection is easier to disconnect at BER measurement at Reference Sensitivity level.

Power	GSM 400 & GSM 900 &	DCS 1 800	PCS 1 900
	GSM 850 & GSM 700		
class	Nominal maximum	Nominal maximum	Nominal maximum
	output power	output	output
		power	power
1		1 W (30 dBm)	1 W (30 dBm)
2	8 W (39 dBm)	0, 25 W (24 dBm)	0, 25 W (24 dBm)
3	5 W (37 dBm)	4 W (36 dBm)	2 W (33 dBm)
4	2 W (33 dBm)		
5	0, 8 W (29 dBm)		

#### Table 2.13-3: Maximum Output Power and Power Class Relationship at GMSK Modulation

#### Table 2.13-4: Maximum Output Power and Power Class Relationship at 8PSK Modulation

Power	GSM 400 and GSM 900 & GSM 850 & GSM 700	DCS 1 800	PCS 1 900
class	Nominal maximum	Nominal maximum	Nominal maximum
	output	output	output
	power	power	power
E1	33 dBm	30 dBm	30 dBm
E2	27 dBm	26 dBm	26 dBm
E3	23 dBm	22 dBm	22 dBm

When measuring using a GSM UE of Power Class 4 (33 dBm max. Tx power), set ms_TXPWR_MAX_CCH to 5. The ms_TXPWR_MAX_CCH setting is the same Power Control Level as the MS Power Level (section 2.13-5).

An example of how to set ms_TXPWR_MAX_CCH to 5 is shown below.

1. Execute **MSPWR_CCH 5** to set [MS_TXPWR_MAX_CCH] to [5].



GSM 400, GSM 900, GSM 850 and GSM 700	
Power control level	Nominal output power (dBm)
0 to 2	39
3	37
4	35
5	33
6	31
7	29
8	27
9	25
10	23
11	21
12	19
13	17
14	15
15	13
16	11
17	9
18	7
19 to 31	5

Table 2.13-5: PCL Setting and Output Power Relationship

Power control level	Nominal output power (dBm)
29	36
30	34
31	32
0	30
1	28
2	26
3	24
4	22
5	20
6	18
7	16
8	14
9	12
10	10
11	8
12	6
13	4
14	2
15-28	0

PC	CS 1 900
Power control level	Output power (dBm)
22 to 29	Reserved
30	33
31	32
0	30
1	28
2	26
3	24
4	22
5	20
6	18
7	16
8	14
9	12
10	10
11	8
12	6
13	4
14	2
15	0
16 to 21	Reserved
## 2.13.4. Frequency Hopping

Frequency hopping changes the communication channel between the base station and UE using a communication frame in the same band.

Six hopping bands (P-GSM, E-GSM, R-GSM, GSM850, DCS1800, PCS1900) are supported. Also, up to 40 hopping channels can be set in one hopping band.

Frequency hopping is performed to measure ARFCN set in Measure Channel & Frequency.

A measurement example for 63CH is show below.

- 1. Execute **PRESET** to preset the parameters.
- 2. Execute FREQSETMODE BAND to set [Setting Mode] to [Band and Channel].
- 3. Execute HOPFREQ P-GSM,2,63,123 to set [ARFCNs] to [2, 63, 123] for the Hopping Frequency Table P-GSM Band.
- 4. Execute **FREQHOP ON** to set [Frequency Hopping] to [On].
- 5. Execute **BAND P-GSM** to set [Hopping Band] to [P-GSM].
- 6. Execute CHAN 2 to set [Measure Channel & Frequency] to [2].
- 7. Connect using GSM.
- 8. Perform measurement.
- 9. Execute CHAN 63 to set [Measure Channel & Frequency] to [63].
- 10. Perform measurement.

Frequency Hopping									
Hopping Frequencies Table									
Band	P-GSM								
ARFCNs	2	63	123	Off	Off	0ff	Off	Off	
	Off	Off	Off	0ff	0ff	0ff	0ff	Off	
	Off	Off	Off	0ff	0ff	0ff	0ff	Off	
	Off	Off	0ff	Off	Off	Off	Off	Off	
	Off	Off	0ff	Off	Off	Off	Off	Off	

## 2.13.5. Multislot Power vs. Time Measurement

The Multislot Power vs. Time Measurement measures the TX Power and Power vs. Time for multislot output from the mobile station (MS).

Up to four slots can be measured according to the Uplink setting at the Multislot Configuration. This function can only be executed by remote command.

- 1. Execute **MLTSLTCFG 2DL2UL** to set [Multi Slot Configuration] to [2DL, 2UL], meaning 2 slot each for Downlink and Uplink.
- 2. Execute **CS MCS5** to set [Coding Scheme] to [MCS-5].
- 3. Connect at Test Mode A.
- 4. Execute CHMSPWR ,15,5 to change MS Power Level [1st Slot] to [15], MS Power Level [2nd Slot] to [5].
- 5. Execute MPWR_REF to optimize the input level of the measurement slot.
- 6. Execute **MEASOBJ 8PSK** to set [Measuring Object] to [8PSK] (**MEASOBJ MSNB** when modulation method is GMSK).
- 7. Execute MLTSLTVSTIME_MEAS ON to set [Multislot Power vs. time Measurement] to [On].
- 8. Execute MLTSLTVSTIME_COUNT 60 to set [Multislot Power vs. time Measurement Count] to [60].
- 9. Execute MPWR_LEADTM 1,1,-28.0 to set 1st slot [Multislot Power vs. Time Offset (Leading Time 1)] to [-28.0] μs.
- 10. Execute MPWR_TRAILTM 1,1,542.8 to set 1st slot [Multislot Power vs. Time Offset (Trailing Time 1)] to [-542.8] μs.
- 11. Execute MPWR_LEADTM 2,1,-28.0 to set 2nd slot [Multislot Power vs. Time Offset (Leading Time 1)] to [-28.0] μs.
- 12. Execute MPWR_TRAILTM 2,1,542.8 to set 2nd slot [Multislot Power vs. Time Offset (Trailing Time 1)] to [-542.8] μs.
- 13. Execute **SWP** to perform BLER measurement.
- 14. Execute **MSTAT?** to read measurement status. (0 is Normal termination.)

#### [1st slot measurement]

- 15. Execute **AVG_MTXPWR? 1,DBM** to read the 1st slot Power measurement result.
- 16. Execute MAX_MPTLEAD? 1,1 to read the 1st slot Leading Time 1 measurement result.
- 17. Execute MAX_MPTTRAIL? 1,1 to read the 1st slot Trailing Time 1 measurement result.

[2nd slot measurement]

- 18. Execute **AVG_MTXPWR? 2,DBM** to read the 2nd slot Power measurement result.
- 19. Execute MAX_MPTLEAD? 2,1 to read the 2nd slot Leading Time 1 measurement result.
- 20. Execute MAX_MPTTRAIL? 2,1 to read the 2nd slot Trailing Time 1 measurement result.

# 3. Audio Measurement

## 3.1. Specifications

Item	Specification
Voice codec	W-CDMA: AMR 12.2 kbps
	GSM: EFR, AMR
Codec level	Encoder input gain: –3.00 to 3.00 dB, 0.01-dB steps
adjustment	Handset microphone volume: 0, 1, 2, 3, 4, 5
	Handset speaker volume: 0, 1, 2, 3, 4, 5
AF Output	Frequency range: 30 Hz to 10 kHz, 1 Hz resolution
	Setting range: 0 to 5 Vpeak (AF Output connector)
	Setting resolution: 1 mV (≤5 Vpeak), 100 μV (≤500 mVpeak), 10 μV (≤50 mVpeak)
	Accuracy: ±0.2 dB (≥10 mVpeak, ≥50 Hz), ±0.3 dB (≥10 mVpeak, <50 Hz)
	Waveform distortion: ≤30 kHz band
	$\leq$ -60 dB ( $\geq$ 500 mVpeak, $\leq$ 5 kHz), $\leq$ -54 dB ( $\geq$ 70 mVpeak)
	Output impedance: ≤1 Ω
	Maximum output current: 100 mA
AF Input	Frequency range: 50 Hz to 10 kHz
	Input voltage range: 1 mVpeak to 5 Vpeak (AF Input connector)
	Maximum allowable input voltage: 30 Vrms
	Input impedance: 100 kΩ
Frequency measurement	Accuracy: ±(Reference oscillator accuracy +0.5 Hz)
Level measurement	Accuracy: ±0.2 dB (≥10 mVpeak, ≥50 Hz) ±0.4 dB (≥1 mVpeak, ≥1 kHz)
SINAD Measurement	Frequency: 1 kHz in ≤30 kHz band
	≥60 dB (≥1000 mVpeak), ≥54 dB (>50 mVpeak), ≥46 dB (≥10 mVpeak)
Distortion	Frequency: 1 kHz in ≤30 kHz band
measurement	≤–60 dB (≥1000 mVpeak), ≤–54 dB (>50 mVpeak), ≤–46 dB (≥10 mVpeak)

## 3.2. How to Use Voice Codec in W-CDMA

For W-CDMA, the Voice Codec can be used to connect with AMR12.2 kbps. The MX882000C-001 option is required.

- 1. Execute CALLPROC ON to set [Call Processing] to [On].
- 2. Execute **TESTMODE OFF** to set [Test Loop Mode] to [Off].
- 3. Execute CHCODING VOICE to set [Channel Coding] to [Voice].
- 4. Execute DTCHPAT VOICE to set [DTCH Data Pattern] to [Voice CODEC].
- 5. When a connection is made, the Voice Codec function can be used.

## 3.3. How to Use Voice Codec in GSM

For GSM, the Voice Codec can be used for EFS, AFS, and AHS connection. The MX882001A-01 option is required.

- 1. Execute **CODEC EFS** to set [Codec] to [EFS].
- 2. Execute TESTPAT VOICE to set [TCH Test Pattern] to [Voice CODEC].
- 3. When a connection is made, the Voice Codec function can be used.

## 3.4. Communications Test

Communication tests can be performed by connecting a handset to the equipment.

- 1. Execute call processing with the Voice Codec setting.
- 2. Execute AF_MODE VOICE to set Audio Parameter [Mode] to [Voice CODEC].
- 3. Execute **AINOUT HANDSET** to set [Audio Input/Output] to [Handset].

## 3.5. Tx Audio Measurement

When a tone signal from the equipment AF Output is input to MIC (microphone), the UE encodes the voice signal and transmits it as the uplink signal.

The equipment receives the uplink signal and inputs the decoded voice signal to the AF Analyzer to measure frequency, level and distortion rate.



- 1. Execute call processing with the Voice Codec setting.
- 2. Execute AF_MODE TXAUDIO to set Audio [Mode] to [TX Audio].
- 3. Execute AF_FREQ 1000 to set Tone Generator (AF Output) [Frequency] to [1000] Hz.
- 4. Execute AF_TGLVL 100 to set Tone Generator (AF Output) [Level] to [100] mV (peak).
- 5. Execute AF_MEAS ON to set [Audio Measurement] to [On].
- 6. Execute **AF_AVG 5** to set [Average Count] of Audio Measurement to [5] times.
- 7. Execute SWP to perform Audio Measurement to Decoder Output signal.
- 8. Execute **AVG_AFFREQ?** to read the Frequency measurement result.
- 9. Execute AVG_TAFLVL? to read the Level measurement result.
- 10. Execute **AVG_AFDSTN_DB?** to read the distortion rate measurement result.

#### When changing the system, set AF Mode to Voice Codec.

Audio Measurement		(Mea	as. Count	:: 5/ 5)
(Source = Decoder Output)				
	Avg.	Max	Min	
Frequency	1000.0	1000.2	999.8	Hz
Level	99.96	99.97	99,95	%(peak)
	0.00	0.00	0.00	dB(peak)
SINAD	2.18	2.26	2.07	dB
Distortion	- 77.77	78.77	77.10	8
	-2.18	-2.07	-2.26	dB

## 3.6. Rx Audio Measurement

The equipment encodes the tone signal generated by the AF Generator and sends it as the downlink signal. The UE decodes the received downlink signal and outputs the voice signal from the speaker. The voice signal is input to the equipment AF Input and the AF Analyzer measures the frequency, level and distortion rate.



- 1. Execute call processing with the Voice Codec setting.
- 2. Execute AF_MODE RXAUDIO to set Audio Parameter [Mode] to [RX Audio].
- 3. Execute AF_FREQ 1000 to set Tone Generator (Encoder Input) [Frequency] to [1000] Hz.
- 4. Execute **AF_EILVL -6** to set [Tone Generator (Encoder Input) [Encoder Input Level] to [-6] dB.
- 5. Execute AF_IRANGE 500 to set Audio Analyzer (AF Input) [Input Level Range] to [500 mV(peak)].
- 6. Execute AF_MEAS ON to set [Audio Measurement] to [On].
- 7. Execute AF_AVG 5 to set [Average Count] of Audio Measurement to [5] times.
- 8. Execute SWP to perform Audio Measurement of the AF Input signal.
- 9. Execute **AVG_AFFREQ?** to read the Frequency measurement result.
- 10. Execute **AVG_RAFLVL?** to read the Level measurement result.
- 11. Execute **AVG_AFDSTN_DB**? to read the distortion rate measurement result.

#### When changing the system, set AF Mode to Voice Codec.

Audio Measurement		(Mea	s. Count	; 5/ 5)
(Source = AF Input)				
	Avg.	Max	Min	
Frequency	1000.2	1000.2	1000.2	Hz
Level	56.82	57.01	56.58	mV(peak)
Relative				dB
SINAD	44.14	44.61	43.82	dB
Distortion	0.62	0.64	0.59	8
	-44.13	-43.82	-44.61	dB

## 3.7. General-purpose Audio Generator/Analyzer

The equipment can be used as a general-purpose audio generator/analyzer.

1. Execute **AF_MODE GENERAL** to set Audio Parameter [Mode] to [General Audio].

Audio Generator Function

- 2. Execute AF_FREQ 1000 to set Tone Generator [Frequency] to [1000] Hz.
- 3. Execute AF_TGLVL 1000 to set Tone Generator [Level] to [-1000] mV/(peak).
- 4. The AF Output outputs a 1 kHz/1000 mV tone signal.

Audio Analyzer Function

- 5. Execute **AF_MEAS ON** to set [Audio Measurement] to [On].
- 6. Execute **AF_AVG 5** to set [Average Count] of Audio Measurement to [5] times.
- 7. Execute SWP to perform Audio Measurement of the AF Input signal.
- 8. Execute AVG_AFFREQ? to read the Frequency measurement result.
- 9. Execute **AVG_RAFLVL?** to read the Level measurement result.
- 10. Execute **AVG_AFDSTN_DB?** to read the distortion rate measurement result.

#### When changing the system, set AF Mode to Voice Codec.

Audio Measurement		(Me	as. Count	: 5/	5)
(Source = AF Input)					
	Avg.	Max	Min		
Frequency	1000.0	1000.0	1000.0	Hz	
Level	998.13	998.14	998.13	mV(rms)	
Relative				dB	
SINAD	63.28	63.50	63.11	dB	_
Distortion	0.07	0.07	0.07	8	
	-63.28	-63.11	-63.50	dB	

## 3.8. Full Scale of AF Input/Output when Using Voice Codec

The following shows an example of Full Scale when the AF Mode is Voice Codec and AF Input/Output is AF.

#### 3.8.1. AF Input

Full Scale and Gain Adjust are parameters related to AF Input.

Full Scale is the AF input level corresponding to the full scale of the speech encoder.

The equipment selects the range from 5 V to 500 mV, 500 to 50 mV, 50 to 1 mV using the ATT, and lower resolutions are executed by digital Gain Adjust.

In addition, the Full Scale offset can be input to Gain Adjust.



A/D Full Scale = 10 Vp

AF Input P	arameter	Internal Gain			
Full Scale (1 mV to 5 Vpeak)	Gain Adjust [dB] (–3.0 to +3.0 dB)	Gain 1	Gain 2		
5 Vpeak	0.0	1	10/5/8 = 0.25		
500 mVpeak	0.0	10	10/(0.5*10)/8 = 0.25		
51 mVpeak	0.0	10	10/(0.051*10)/8 = 2.45		
50 mVpeak	0.0	100	10/(0.05*100)/8 = 0.25		
x (0.5 V to 5 Vpeak)	У	1	10/x/8*10^(y/20)		
x (50 mV to 0.5	У	10	10/(x*10)/8*10^(y/20)		
Vpeak)					
x ( to 50 mVpeak)	У	100	10/(x*100)/8*10^(y/20)		

## 3.8.2. AF Output

Full Scale is a parameter related to AF Output

Full Scale is the AF output level corresponding to the full scale of the speech decoder.

The equipment selects the range from 5 V to 500 mV, 500 to 50 mV, +50 mV, using the ATT, and lower resolutions are executed by digital Gain Adjust.



D/A Full Scale = 10 Vp

AF Output Parameter	Internal Gain				
Full Scale ( to 5 Vpeak)	Gain 3	Gain 4			
5 Vpeak	5/10*8 = 4	1			
500 mVpeak	0.5/(10*0.1)*8 = 4	0.1			
51 mVpeak	0.051/(10*0.1)*8 = 0.4	0.1			
50 mVpeak	0.05/(10*0.01)*8 = 4	0.01			
x (0.5 V to 5 Vpeak)	x/10*8	1			
x (50 mV to 0.5 Vpeak)	x/(10*0.1)*8	0.1			
x ( to 50 mVpeak)	x/(10*0.01)*8	0.01			

## 3.9. Audio Measurement

An example of how to measure audio in compliance with 3GPP TS 26.131 and 26.132 is shown below. An external audio generator/analyzer are required for this measurement.

## 3.9.1. Tx Measurement



- 1. Execute call processing with the Voice Codec setting.
- 2. Execute AF_MODE VOICE to set Audio Parameter [Mode] to [Voice CODEC].
- 3. Execute AINOUT AF to set [Audio Input/Output] to [AF].
- 4. Execute AOFLSCL 1110 to set AF Output [Full Scale] to [1110] mV (peak).
- 5. Transmit an audio signal from Audio Generator and perform audio measurement using the Audio Analyzer.

The AF Output Full Scale is calculated as shown in <Calculation> below, based on the following D/A converter <Condition> described in 3GPP TS 26.132 5.2.1 Codec Approach and Specification. <Condition>

*D/A* converter - a Digital Test Sequence (DTS) representing the codec equivalent of an analogue sinusoidal signal whose r ms value is 3,14 dB below the maximum full load capacity of the codec shall generate 0 dBm across a 600 ohm load;

#### <Calculation>

For 0 dBm, if the impedance is 600  $\Omega,$  the voltage will be 774.6 mV.

If a 0-dBm sinusoidal signal of less than 3.14 dB is output at the full load capacity of the codec, it can satisfy the condition. Therefore, the AF Output Full Scale becomes 774.6*10^(3.14/20) = 1110 mV.



- 1. Execute call processing with the Voice Codec setting.
- 2. Execute **AF_MODE VOICE** to set Audio Parameter [Mode] to [Voice CODEC].
- 3. Execute **AINOUT AF** to set [Audio Input/Output] to [AF].
- 4. Execute AIFLSCL 2210 to set AF Input [Full Scale] to [2210] mV (peak).
- 5. Send an audio signal from the Audio Generator and perform audio measurement using the Audio Analyzer.

The AF Input Full Scale is calculated as shown in <Calculation> below, based on following A/D converter <Condition> described in 3GPP TS 26.132 5.2.1 Codec Approach and Specification. <Condition>

A/D converter - a 0 dBm signal generated from a 600  $\Omega$  source shall give the digital test sequence (DTS) representing the codec equivalent of an analogue sinusoidal signal whose R MS value is 3.14 dB below the maximum full-load capacity of the codec.

<Calculation>

Regarding 0 dBm, if the impedance is 600  $\Omega$ , the voltage will be 774.6 mV. However, the input impedance of the MT8820A is 100 k $\Omega$ , so the input voltage will be 774.6*2 = 1549 mV.

To meet the condition, the 0-dBm sinusoidal signal shall be 3.14 dB below the full load capacity of the codec. Therefore, the AF Input Full Scale becomes  $1549*10^{(3.14/20)} = 2220 \text{ mV}$ .

## Appendix A Inner Loop Power Control Measurement(Previous procedure)

The following measurement uses Inner Loop Power Control measurement on Time Domain Measurement screen. Due to limits on the equipment dynamic range (40 dB), Test Steps E, F, G, and H cannot be measured simultaneously, so measurement must be performed twice by changing the Input Level.

- 1. Execute **SCRSEL TDMEAS** to display the Time Domain Measurement screen.
- 2. Execute MEASOBJ ILPC to set [Measurement Object] to [Inner Loop Power Control].
- 3. Execute **SLOTLIST ON** to display the slot list.
- 4. Execute **REGSLOTLIST 0-59** to register Slot0~Slot59 for the slot list.
- 5. Execute **TIMSPAN 40.0MS** to set [Time Span] of Time Domain measurement to [40.0] ms.
- 6. Execute **OLVL -93** to set [Output Level] to [-93] dBm.
- 7. Execute **TPCALGO 2** to set [Power Control Algorithm] to [Algorithm 2].
- 8. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 9. Execute **TDM_RRC OFF** to set [RRC Filter] to [Off].
- 10. Execute **VFILTLEN 0.1US** to set [Video Filter Length] to [0.1] μs.
- 11. Connect using Test Loop Mode1.

## A.1 Inner Loop Power Control Parameter

Inner Loop Power Control Parameter of Call Processing Parameter is the steady-state setting of the TPC command. When Power Control Bit Pattern is set to [Inner Loop Power Control], the TPC command is sent automatically to adjust UE output power to Input Level.

In the case of Inner Loop Power Control Parameter of Time Domain Parameter, the TPC command between Slot 0 and the specified Slot is set only when Measurement Object of Time Domain Measurement is measured using Inner Loop Power Control. After sending the specified number of slots, the TPC command set at Call Processing Parameter is sent.

Sometimes, at Inner Loop Power Control measurement, the UE output power must be set lower (or higher) than [Input Level] before measurement.

Examples of how to set Input Level to +30 dBm and UE output power to -10 dBm are shown below.

- 1. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 2. Execute ILVL -10.0 to set [Input Level] to [-10.0] dBm.
- 3. Wait until the UE power is –10.0 dBm.
- 4. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 5. Execute ILVL 30.0 to set [Input Level] to [+30.0] dBm.

Function	Command	Query	Response	Remarks	
Call Processing Parameter - Ir	iner Loop Power Cont	rol			
Power Control Algorithm	Algorithm 1	TPCALGO 1	TPCALGO?	1	
	Algorithm 2	TPCALGO 2		2	
TPC Step Size	1 dB	TPCSTEP 1	TPCSTEP?	1	
	2 dB	TPCSTEP 2		2	
Power Control Bit Pattern	All 0	TPCPAT ALL0	TPCPAT?	ALL0	
	All 1	TPCPAT ALL1		ALL1	
	Alternate	TPCPAT ALT		ALT	
	Inner Loop Power	TPCPAT ILPC		ILPC	
	Control				
Time Domain Parameter - Inn	er Loop Power Contro	bl			
ILPC TPC Method	Step A	ILP_TPC A	ILP_TPC?	А	
	Step H	ILP_TPC H		н	
ILPC TPC Command Slot Le	ILPC TPC Command Slot Length		ILP_CMDSLOT?	length	method =B to H
		method, length	method		length = 1 to 450 slot

## A.2 5.4.2 Inner Loop Power Control in Uplink

[Step A]

- 23. Execute ILP_TPC A to set [TPC Method] to [Step A].
- 24. Execute **TPCALGO 2** to set [Power Control Algorithm] to [Algorithm 2].
- 25. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 26. Execute **TPCPAT ILPC** to set [Power Control Bit Pattern] to [Inner Loop Power Control].
- 27. Execute **ILVL -10.0** to set [Input Level] to [-10.0] dBm.
- 28. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 29. Execute **ILVL 0.0** to set [Input Level] to [0.0] dBm.
- 30. Execute **SWP** to perform measurement.
- 31. Execute **SLOT_PWR? ALL** to read the measurement result.

Inner Loop Power Control (Internal Trigger)									
Marker Off									
Input Level :									
0.00 dBm									
			1			1	I I		
	· · · · ·								
			· ·			 			
+			· +						
			· 4			 	• • •		
0.0000 [m:	s]		20.0	0000				40.0000	

#### [Step B]

- 32. Execute ILP_TPC B to set [TPC Method] to [Step B].
- 33. Execute **TPCALGO 2** to set [Power Control Algorithm] to [Algorithm 2].
- 34. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 35. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 36. Execute **ILVL 0.0** to set [Input Level] to [0.0] dBm.
- 37. Execute **SWP** to perform measurement.
- 38. Execute **SLOT_PWR? ALL** to read the measurement result.

Inner Loop Power Control (Internal Trigger)								
		Man	ker Off					
Input Level 💠								
0.00 dBm								
	1				I	I	I	·
¦	1				I I	I	I	
	1				!			
					/ ! !	! ! !		
	i				i '		 I	÷
	J			L	 	 	L I	<u>+</u>
+						¦		<u>+</u>
	 			L	 	 		·
	1				1	1	1	1
0.0000 [ms]			20.	0000				40.0000

[Step C]

- 39. Execute **ILP_TPC C** to set [TPC Method] to [Step C].
- 40. Execute **TPCALGO 2** to set [Power Control Algorithm] to [Algorithm 2].
- 41. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 42. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 43. Execute **ILVL 0.0** to set [Input Level] to [0.0] dBm.
- 44. Execute **SWP** to perform measurement.
- 45. Execute **SLOT_PWR? ALL** to read the measurement result.

	Inner L	.oop Pow	<mark>er Cont</mark>	rol (Int	<mark>ernal T</mark> i	niggen)	
		Man	ker Off				
Input Level 💠							
0.00 dBm							
	1	1			1		·
	<u> </u>						
				·			
	-						
	   				1		
	 !						r
	J !	   		L	   		
	i '				i I		 F
 ¦		 			J !		<u></u>
0.0000 [ms]			20.	0000			40.0000

#### [Step D]

- 46. Execute **ILP_TPC D** to set [TPC Method] to [Step D].
- 47. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].
- 48. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 49. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 50. Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 51. Execute **SWP** to perform the measurement.
- 52. Execute **SLOT_PWR? ALL** to read the measurement result.



#### [Step E 1]

- 53. Execute **ILP_TPC E** to set [TPC Method] to [Step E].
- 54. Execute **ILP_CMDSLOT E,40** to set [Length] of Test Step E to [40] Slot.
- 55. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].
- 56. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 57. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 58. Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 59. Execute **SWP** to perform measurement.
- 60. Execute **SLOT_PWR? ALL** to read the measurement result.



#### [Step E 2]

- 61. Execute ILP_TPC E to set [TPC Method] to [Step E].
- 62. Execute **ILP_CMDSLOT E,40** to set [Length] of Test Step E to [40] Slot.
- 63. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].
- 64. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 65. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 66. Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 67. Execute **SWP** to perform measurement.
- 68. Execute **SLOT_PWR? ALL** to read the measurement result.



[Step F 1]

- 69. Execute ILP_TPC F to set [TPC Method] to [Step F].
- 70. Execute ILP_CMDSLOT F,40 to set [Length] of Test Step F to [40] Slot.
- 71. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].
- 72. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 73. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 74. Execute **ILVL -15.0** to set [Input Level] to [-15.0] dBm.
- 75. Execute **SWP** to perform measurement.
- 76. Execute **SLOT_PWR? ALL** to read the measurement result.



#### [Step F 2]

- 77. Execute **ILP_TPC F** to set [TPC Method] to [Step F].
- 78. Execute **ILP_CMDSLOT F,40** to set [Length] of Test Step F to [40] Slot.
- 79. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].

- 80. Execute **TPCSTEP 1** to set [TPC Step Size] to [1 dB].
- 81. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 82. Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 83. Execute **SWP** to perform measurement.
- 84. Execute **SLOT_PWR? ALL** to read the measurement result.

Inner Loop Power Control (Internal Trigger)								
Marker Off								
Input Level :								
25.00 dBm								
	ىتىمى _{مىمى} تى		 ! !					
and the second s	ור ^{ב-}	r ,	۲ ۲ ۱					
		L !	 !					
			+					
	i	i						
0.0000 [ms	]		20.0	0000				40.0000

[Step G 1]

- 85. Execute **ILP_TPC G** to set [TPC Method] to [Step G].
- 86. Execute ILP_CMDSLOT G,20 to set [Length] of Test Step G to [20] Slot.
- 87. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].
- 88. Execute **TPCSTEP 2** to set [TPC Step Size] to [2 dB].
- 89. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 90. Execute ILVL 25.0 to set [Input Level] to [+25.0] dBm.
- 91. Execute **SWP** to perform measurement.
- 92. Execute **SLOT_PWR? ALL** to read the measurement result.



[Step G 2]

- 93. Execute ILP_TPC G to set [TPC Method] to [Step G].
- 94. Execute ILP_CMDSLOT G,20 to set [Length] of Test Step G to [20] Slot.
- 95. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].
- 96. Execute **TPCSTEP 2** to set [TPC Step Size] to [2 dB].
- 97. Execute TPCPAT ALT to set [Power Control Bit Pattern] to [Alternate].
- 98. Execute ILVL -15.0 to set [Input Level] to [-15.0] dBm.
- 99. Execute **SWP** to perform measurement.

#### 100. Execute **SLOT_PWR? ALL** to read the measurement result.



[Step H 1]

- 101. Execute **ILP_TPC H** to set [TPC Method] to [Step H].
- 102. Execute ILP_CMDSLOT H,20 to set [Length] of Test Step H to [20] Slot.
- 103. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].
- 104. Execute **TPCSTEP 2** to set [TPC Step Size] to [2 dB].
- 105. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 106. Execute **ILVL -10.0** to set [Input Level] to [–10.0] dBm.
- 107. Execute **SWP** to perform measurement.
- 108. Execute **SLOT_PWR? ALL** to read the measurement result.



[Step H 2]

- 109. Execute **ILP_TPC H** to set [TPC Method] to [Step H].
- 110. Execute ILP_CMDSLOT H,20 to set [Length] of Test Step H to [20] Slot.
- 111. Execute **TPCALGO 1** to set [Power Control Algorithm] to [Algorithm 1].
- 112. Execute **TPCSTEP 2** to set [TPC Step Size] to [2 dB].
- 113. Execute **TPCPAT ALT** to set [Power Control Bit Pattern] to [Alternate].
- 114. Execute ILVL 30.0 to set [Input Level] to [+30.0] dBm.
- 115. Execute **SWP** to perform measurement.
- 116. Execute **SLOT_PWR? ALL** to read the measurement result.



Sur 15 54.121 rable 5.4.2.5.1. Transmitter power control range									
TPC_cmd	Transmitter Power Control Range (all units in dB)								
	1-dB	1-dB steps 2-dB steps		steps	3-dB steps				
	Lower	Upper	Lower	Upper	Lower	Upper			
+1	+0,4	+1,6	+0,85	+3,15	+1,3	+4,7			
0	-0,6	+0,6	-0,6	+0,6	-0,6	+0,6			
-1	-0,4	-1,6	-0,85	-3,15	-1,3	-4,7			

3GPP TS 34.121 Table 5.4.2.5.1: Transmitter power control range

## 3GPP TS 34.121 Table 5.4.2.5.2: Transmitter aggregate power control tolerance

TPC_cmd group	Transmit	ter Power C Equal TPC_c (all unit	Transmitter Power Control Range after 7 Equal TPC_cmd Groups (all units in dB)			
	1-dB	steps	2-dB steps		3-dB steps	
	Lower	Upper	Lower	Upper	Lower	Upper
+1	+7,7	+12,3	+15,7	+24,3	+15,7	+26,3
0	-1,1	+1,1	-1,1	+1,1	-1,1	+1,1
-1	-7,7	-12,3	-15,7	-24,3	-15,7	-26,3
0,0,0,0,+1	+5,7	+14,3	N/A	N/A	N/A	N/A
0,0,0,0,-1	-5,7	-14,3	N/A	N/A	N/A	N/A

## A.3 How to Combine Segmentations at Step E, F, G, H of Inner Loop Power Control

Due to dynamic range limits, each Test Step E, F, G and H must be performed twice at different Input Levels. See the following explanations to combine the first and second Slot List.

Before the first measurement, set [Power Control Bit Pattern] to [Alternate], so the [Power Control Bit Pattern] is [Alternate] also after the measurement.

Because the first and last bits are not fixed, there are four Alternate Patterns sent between combined segmentation {0,1, ...,1,0},{0,1,...,0,1},{1,0,...,1,0},{1,0,...,0,1}.

Combination must be performed by considering "the sum of Bit number 0 is larger than Bit number 1," "the sum of Bit number 0 and 1 are equal," "the sum of Bit number 0 is smaller than Bit number 1."

An example of Test StepE is shown below.

- (4) When the sum of Bit number 0 is larger than Bit number 1 {0,1, ...,1,0}
- The head Slot No. of StepE2 becomes –1, because it starts with the level that is 1 dB lower than the last Slot of StepE1.



(5) When the sum of Bit number 0 and 1 are equal {0,1,...,0,1}, {1,0,...,1,0}The head Slot No. of StepE2 becomes 0, because it starts with the same level as the last Slot of StepE1.



- (6) When the sum of Bit number 0 is smaller than Bit number 1 {1,0,...,0,1}
- The head Slot No of StepE2 becomes 1, because it starts with the level that is 1 dB higher than the last Slot of StepE1.



#### [Step E]

- 6. Execute [Step E 1] (see 5.4.2 Inner Loop Power Control in the Uplink).
- 7. Execute **REGSLOTLIST -1** to register Slot(-1) in slot list.
- 8. Execute TRGDELAY -0.7MS to set [Trigger Delay] to [-0.7] ms (1Slot length).
- 9. Execute [Step E 2]. (See 5.4.2 Inner Loop Power Control in Uplink.)
- 10. Check the Power difference between the first Slot of Step E 2 and the last Slot of Step E 1.
  - When the difference is <–0.5 dB, the head Slot of Step E 2 becomes –1.
  - When the difference is within ±0.5 dB, the head Slot of Step E 2 becomes 0.
  - When the difference is >0.5 dB, the head Slot of Step E 2 becomes 1.

#### [Step F]

- 6. Execute [Step F 1]. (See 5.4.2 Inner Loop Power Control in the Uplink.)
- 7. Execute **REGSLOTLIST -1** to register Slot(-1) in slot list.
- 8. Execute **TRGDELAY -0.7MS** to set [Trigger Delay] to [-0.7] ms (1Slot length).
- 9. Execute [Step F 2]. (See 5.4.2 Inner Loop Power Control in Uplink.)
- 10. Check the Power difference between the first Slot of Step F 2 and the last Slot of Step F 1.
  - When the difference is <–0.5 dB, the head Slot of Step F 2 becomes 1.
  - When the difference is within ±0.5 dB, the head Slot of Step F 2 becomes 0.
  - When the difference is >0.5 dB, the head Slot of Step F 2 becomes –1.

#### [Step G]

- 6. Execute [Step G 1]. (See 5.4.2 Inner Loop Power Control in Uplink.).
- 7. Execute **REGSLOTLIST -1** to register Slot(-1) in slot list.
- 8. Execute TRGDELAY -0.7MS to set [Trigger Delay] to [-0.7] ms (1Slot length).
- 9. Execute [Step G 2]. (See 5.4.2 Inner Loop Power Control in Uplink.)
- 10. Check the Power difference between the first Slot of Step G 2 and the last Slot of Step G 1.
  - When the difference is <–1 dB, the head Slot of Step G 2 becomes –1.
    - When the difference is within ±1 dB, the head Slot of Step G 2 becomes 0.
    - When the difference is >1 dB, the head Slot of Step G 2 becomes 1.

#### [Step H]

- 6. Execute [Step H 1]. (See 5.4.2 Inner Loop Power Control in Uplink.)
- 7. Execute **REGSLOTLIST -1** to register Slot(-1) in slot list.
- 8. Execute TRGDELAY -0.7MS to set [Trigger Delay] to [-0.7] ms (1Slot length).
- 9. Execute [Step H 2]. (See 5.4.2 Inner Loop Power Control in Uplink.)
- 10. Check the Power difference between the first Slot of Step H 2 and the last Slot of Step H 1.
  - When the difference is <–1 dB, the head Slot of Step H 2 becomes 1.
  - When the difference is within ±1 dB, the head Slot of Step H 2 becomes 0.
  - When the difference is >1 dB, the head Slot of Step H 2 becomes –1.

Note

# **Anritsu** envision : ensure

#### United States

Anritsu Company 1155 East Collins Blvd., Suite 100, Richardson, TX 75081, U.S.A. Toll Free: 1-800-267-4878 Phone: +1-972-644-1777 Fax: +1-972-671-1877

Canada Anritsu Electronics Ltd. 700 Silver Seven Road, Suite 120, Kanata, Ontario K2V 1C3 Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006

#### • Brazil Anritsu Eletronica Ltda. Praça Amadeu Amaral, 27 - 1 Andar 01327-010 - Bela Vista - Sao Paulo - SP Brazil Phone: +55-11-3283-2511

Fax: +55-11-3288-6940 Mexico

Anritsu Company, S.A. de C.V. Av. Ejército Nacional No. 579 Piso 9, Col. Granada 11520 México, D.F., México Phone: +52-55-1101-2370 Fax: +52-55-5254-3147

• United Kingdom Anritsu EMEA Ltd. 200 Capability Green, Luton, Bedfordshire, LU1 3LU, U.K. Phone: +44-1582-433200 Fax: +44-1582-731303

• France Anritsu S.A. 12 avenue du Québec, Bâtiment Iris 1- Silic 612, 91140 VILLEBON SUR YVETTE, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65

Germany Anritsu GmbH Nemetschek Haus, Konrad-Zuse-Platz 1 81829 München, Germany Phone: +49-89-442308-0 Fax: +49-89-442308-55

Italy

Anritsu S.r.l. Via Elio Vittorini 129, 00144 Roma, Italy Phone: +39-6-509-9711 Fax: +39-6-502-2425

Sweden Anritsu AB Kistagången 20B, 164 40 KISTA, Sweden Phone: +46-8-534-707-00 Fax: +46-8-534-707-30

• Finland Anritsu AB Teknobulevardi 3-5, FI-01530 VANTAA, Finland Phone: +358-20-741-8100 Fax: +358-20-741-8111

 Denmark Anritsu A/S Kay Fiskers Plads 9, 2300 Copenhagen S, Denmark Phone: +45-7211-2200 Fax: +45-7211-2210

• Russia Anritsu EMEA Ltd. **Representation Office in Russia** Tverskaya str. 16/2, bld. 1, 7th floor. Moscow, 125009, Russia Phone: +7-495-363-1694 Fax: +7-495-935-8962

• Spain Anritsu EMEA Ltd. Representation Office in Spain Edificio Cuzco IV, Po. de la Castellana, 141, Pta. 8 28046, Madrid, Spain Phone: +34-915-726-761 Fax: +34-915-726-621

• United Arab Emirates Anritsu EMEA Ltd. Dubai Liaison Office 902, Aurora Tower, P O Box: 500311- Dubai Internet City

Dubai, United Arab Emirates Phone: +971-4-3758479 Fax: +971-4-4249036

Specifications are subject to change without notice.

India Anritsu India Private Limited 2nd & 3rd Floor, #837/1, Binnamangla 1st Stage, Indiranagar, 100ft Road, Bangalore - 560038, India Phone: +91-80-4058-1300 Fax: +91-80-4058-1301

Singapore Anritsu Pte. Ltd. 11 Chang Charn Road, #04-01, Shriro House Singapore 159640 Phone: +65-6282-2400 Fax: +65-6282-2533

• P.R. China (Shanghai) Anritsu (China) Co., Ltd. Nom 2701-2705, Tower A, New Caohejing International Business Center No. 391 Gui Ping Road Shanghai, 200233, P.R. China Phone: +86-21-6237-0898 Fax: +86-21-6237-0899

• P.R. China (Hong Kong) Anritsu Company Ltd. Unit 1006-7, 10/F., Greenfield Tower, Concordia Plaza, No. 1 Science Museum Road, Tsim Sha Tsui East, Kowloon, Hong Kong, P.R. China Phone: +852-2301-4980 Fax: +852-2301-3545

• Japan Anritsu Corporation 8-5, Tamura-cho, Atsugi-shi, Kanagawa, 243-0016 Japan Phone: +81-46-296-6509 Fax: +81-46-225-8359

Korea Anritsu Corporation, Ltd. 5FL, 235 Pangyoyeok-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13494 Korea Phone: +82-31-696-7750 Fax: +82-31-696-7751

• Australia Anritsu Pty. Ltd. Unit 20, 21-35 Ricketts Road, Mount Waverley, Victoria 3149, Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255

• Taiwan Anritsu Company Inc. 7F, No. 316, Sec. 1, NeiHu Rd., Taipei 114, Taiwan Phone: +886-2-8751-1816 Fax: +886-2-8751-1817

Printed in Japan 公知 1603